Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ControlNet是什么?

Answer

ControlNet是一种神经网络模型,由斯坦福大学张吕敏发布,它与预训练的图像扩散模型(例如Stable Diffusion)结合使用,通过引入额外的条件输入来控制AI绘画的生成过程。ControlNet模型通过在Stable Diffusion模型中添加辅助模块,实现对生成图像的精细控制。这些条件输入可以是多种类型的图像,例如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,它们作为条件输入来指导生成图像的内容。

ControlNet的工作原理涉及将Stable Diffusion模型的权重复制到ControlNet的可训练副本中,并使用外部条件向量来训练这个副本。这样做的好处是,可以在不破坏Stable Diffusion模型原本能力的前提下,通过小批量数据集对ControlNet进行训练,从而实现对特定条件的学习。

ControlNet的设计思想提供了训练过程中的鲁棒性,避免了模型过度拟合,并允许在小规模甚至个人设备上进行训练。此外,ControlNet的架构具有强大的兼容性与迁移能力,可以用于其他扩散模型中,增强了图像生成的多样性和可控性。

ControlNet的应用不仅限于AI绘画,它还可以用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在AI生成内容(AIGC)领域的广泛应用潜力。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
controlnet
ControlNet 是一种在 AI 绘画领域具有重要作用的神经网络模型,由斯坦福大学张吕敏发布。它与预训练的图像扩散模型(如 Stable Diffusion)结合使用,通过引入额外的条件输入来实现对 AI 绘画生成过程的精细控制。 其最大的特点和优势在于: 1. 无论是文生图还是图生图,当需要更细化地控制构图、轮廓、形象姿态、色彩风格等方面时,ControlNet 发挥了强大的作用,让输出结果能更好地被控制。 2. 工作逻辑是通过预处理器将图片提取特征,并转换为 AI 可识别的形式,再通过模型将预处理器的结果进行图像生成。预处理器就如同人和 ControlNet 之间的翻译软件。 3. 其应用广泛,不仅限于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在 AIGC 领域的广泛应用潜力。 关于 ControlNet 插件的安装,如果使用秋叶大佬的整合包,会自带这个插件。如果没有,可以去扩展中搜索 ControlNet 进行安装。安装完成后,即可看到其使用界面。 例如,想绘制一张女孩打篮球并模仿库里动作的图片,输入相关关键词,大模型选择 Toonyou 的二次元卡通风格,在 ControlNet 中导入库里的照片,预处理器选择 openpose,点击预处理器右侧的爆炸标志,可看到提炼出来的骨骼结构。使用同样名为 openpose 的模型,调试参数,点击生成。 在让照片中的小姐姐摆出指定姿势的操作中,首先正常填写大模型和关键词生成照片,接着鼠标滑到最下面点击“ControlNet”,然后上传指定姿势的照片并点击“启用”,在“预处理器”和“模型”里选择“openpose”,点击“预览预处理结果”,最后点击生成照片即可。
2025-03-25
stable difussion controlnet
Stable Diffusion 相关信息: Stable Diffusion 3.5 已发布,我们对安全高度重视并采取措施防止不良行为者滥用。10 月 29 日将公开发布 Stable Diffusion 3.5 Medium,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 ControlNet 允许通过线稿、动作识别、深度信息等对生成的图像进行控制。使用前需确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用该项 ControlNet,选择合适的 Preprocessor、调整 Weight 和 Guidance strength 等,还有一些特殊设置如 Invert Input Color、RGB to BGR、Low VRAM、Guess Mode 等。 用 Stable Diffusion 装饰二维码的方法:首先使用 img2img 生成类似于 QR 码的图像,在采样步骤中打开 ControlNet 以将 QR 码压印到图像上,在采样步骤接近尾声时关闭 ControlNet 以提高图像的一致性。具体步骤包括选择检查点模型、输入提示和否定提示、上传二维码到 img2img 画布、设置图像到图像的相关参数、将二维码上传到 ControlNet 的图像画布并设置 ControlNet 的相关参数,最后按生成并用手机查看二维码。
2025-02-25
用一句话解释什么是controlnet
ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型(如 Stable Diffusion)结合,通过引入如涂鸦、边缘图等多种类型的额外条件输入来控制 AI 绘画生成过程,其工作原理是在 Stable Diffusion 模型中添加辅助模块,实现对生成图像的精细控制,还具有训练鲁棒性、兼容性与迁移能力,不仅用于 AI 绘画,还可用于图像编辑等多种计算机视觉任务。使用时需注意相关设置和安装,如确保路径同步、选择合适的预处理器和模型等。
2024-12-23
什么是Controlnet
ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型如 Stable Diffusion 结合使用,用于控制 AI 绘画的生成过程。 其工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并利用外部条件向量训练副本。条件输入类型多样,如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,以此指导生成图像的内容。 ControlNet 具有以下特点和优势: 1. 设计思想提供了训练过程中的鲁棒性,避免过度拟合,允许在小规模甚至个人设备上训练。 2. 架构具有强大的兼容性与迁移能力,可用于其他扩散模型,增强图像生成的多样性和可控性。 其应用不仅限于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现出在 AIGC 领域的广泛应用潜力。 在使用方面,如在 Stable Diffusion 中,无论是文生图还是图生图,ControlNet 能实现更细化的控制,如构图、轮廓、形象姿态、色彩风格等。使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。预处理器如同“翻译软件”。例如绘制女孩模仿库里打篮球的图片,输入关键词和选择相应预处理器、模型等操作后即可生成。 在 Stable Diffusion 中使用 ControlNet 时,要注意一些设置,如确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用,选择预处理器,调整权重、控制生成步骤、反色模式等,还需根据情况选择合适的模型。
2024-11-24
controlnet教程
以下是关于 ControlNet 的教程: ControlNet 是 Stable Diffusion 中的一个功能,能够让用户更精确地控制出图结果。比如可以控制人物的动作、建筑物的线条等。 在使用时,大模型和关键词正常填写生成所需照片。然后鼠标滑到最下面点击“ControlNet”: 1. 点击空白处上传指定姿势的照片。 2. 点击“启用”。 3. 在“预处理器”和“模型”里选择“openpose”,这用于让计算机识别人物姿势。 接着点击“预览预处理结果”,原照片右边会出现人物姿势的线条,最后点击生成照片即可得到指定姿势的图片。 另外,如果是用秋叶大佬的整合包,会自带 ControlNet 插件。若没有,可去扩展中搜索安装。 其使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。例如绘制女孩打篮球模仿库里动作的图片,输入相关关键词,选择大模型,在 ControlNet 中导入库里照片,选择合适的预处理器和模型,调试参数后生成。 在 ControlNet 中还可以尝试不同的预处理器,如 softedge_pidinet、depth、canny、tile 等,可能会得到不错的效果。同时要注意电脑配置,避免出现显存不足等问题。
2024-10-18
什么是controlnet? controlnet有什么重要作用
ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,常与预训练的图像扩散模型(如 Stable Diffusion)结合使用。 其重要作用包括: 1. 实现对 AI 绘画生成过程的精细控制,通过引入如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等多种类型的额外条件输入来指导生成图像的内容。 2. 工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并使用外部条件向量训练副本,在不破坏原模型能力的前提下,通过小批量数据集训练实现对特定条件的学习。 3. 设计思想提供了训练过程的鲁棒性,避免过度拟合,允许在小规模甚至个人设备上训练,架构具有强大的兼容性与迁移能力,可用于其他扩散模型,增强图像生成的多样性和可控性。 4. 应用不限于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在 AIGC 领域的广泛应用潜力。 在 Stable Diffusion 中,ControlNet 带来的最大改变是让输出结果能更好地被控制。其使用逻辑是通过预处理器将图片提取特征并转换为 AI 可识别的形式,再通过模型进行图像生成。在使用时,如启用 ControlNet 需点击 Enable,Preprocessor 指预处理器,Weight 可调整其在合成中的影响权重,Guidance strength 控制图像生成的前百分之多少步由 ControlNet 主导生成,Invert Input Color 可启动反色模式,RGB to BGR 可反转输入色彩通道信息,Low VRAM 为低显存优化,Guess Mode 为无提示词模式。同时,Model 中选择的解析模型应与输入图像或预处理器对应。
2024-09-13