Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请你给我讲讲中医和人工智能相结合的案例

Answer

中医与人工智能(AI)的结合是现代科技发展与传统医学知识融合的一个典型案例。以下是一些中医与AI结合的案例:

  1. 中医药AI大模型共建:清华大学的两个院士团队,博奥晶方和水木分子,合作开发中医药AI大模型,旨在利用AI技术挖掘中医药的原创研发数据,推动中医药现代化和新药研发。

  2. 智能中医管理系统:李梢教授团队利用UNIQ系统,结合临床病例数据,发现了胃癌“极早期”阶段,并通过中药干预可能阻断癌变,提升了中医药精准诊疗水平。

  3. 中医辅助诊疗系统:通过图像智能识别、计算机视觉和自然语言处理技术,AI可以模拟中医的诊断过程,如通过舌象图像进行胃癌筛查和诊断,以及通过眼睛颜色、形状与疾病之间关系的分析进行临床诊断。

  4. 中医教育与传承:AI技术帮助将知名医生的个性化诊断和治疗经验转化为标准化协议,提高了中医传承的效率,促进了中医药人才培养。

  5. 中医药数据挖掘:AI技术在分析大规模中药处方数据集和识别药物之间的潜在模式方面发挥着重要作用,有助于优化处方和提高治疗效果。

  6. 中药质量控制:利用深度学习和神经智能网络,AI可以智能识别中药材片,提高中药的标准化和质量稳定性。

  7. 中医诊疗规则获取与模型设计:通过集成不同来源的诊疗规则,形成以证候要素为核心的集成诊疗规则,并利用图卷积神经网络和知识图谱构建可视化模型。

这些案例展示了AI技术在中医药领域的广泛应用,包括药物研发、疾病诊断、质量控制、数据挖掘和教育传承等。通过AI的帮助,中医药能够更高效地进行知识传承、疾病治疗和新药开发,同时也为中医药的现代化和国际化提供了新的途径。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
RAG和微调是什么,分别详细讲讲一下它是怎么实现的
RAG(RetrievalAugmented Generation,检索增强生成)是解决大语言模型在实际应用中存在的一些问题的有效方案。 大语言模型存在以下问题: 1. 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 2. 幻觉问题:基于数学概率的文字预测导致可能提供虚假、过时或通用的信息。 3. 数据安全性:企业担心私域数据上传第三方平台训练导致泄露。 RAG 可以让大语言模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解模型如何生成最终结果。它类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。 微调类似于让学生通过广泛学习内化知识。这种方法在模型需要复制特定结构、样式或格式时非常有用。微调可以提高非微调模型的性能,使交互更有效率,特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向模型提供复杂的指令。然而,微调不适合合并模型中的新知识或需要新用例的快速迭代。 参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2025-02-19
请你讲讲如何写提示词能与KIMI有效沟通
以下是关于如何写提示词与 KIMI 有效沟通的一些要点: 1. 不要期望设计一个完美的提示词就能得到理想答案,应将提示词视为一个相对完善的“谈话方案”,在与 KIMI 的对话中产生最终成果,并限缩自己思维中的模糊地带。 2. 多给 KIMI 几轮对话修正的余地,不要期望一次输入提示词就能得到想要的东西,因为很多时候自己刚开始也不清楚想要什么。 3. 可以参考以下步骤: 询问 KIMI“更好的提问”的方法论。 让 KIMI 分析提问适合的优化方法,并给出优化过程和结果。 将 KIMI 优化后的提问输入给特定的自动结构化框架,得到“提问优化助手”Prompt。 新建对话,先将“提问优化助手”发给 KIMI,再发送原始提问,得到结果。 再新建对话,让 KIMI 对比两份结果。 4. 在创作视频分镜头时,也可以借助 KIMI 写画面描述,甚至加上对音效的需求。同时,要尽可能精简人物对话,提炼重点。画面数量与台词长短有关,需平衡画面之间的联系。
2025-02-16
AI应用的挑战之一,数据,可以展开讲讲吗
在 AI 应用中,数据是至关重要但也面临诸多挑战: 1. 高质量数据短缺:传统互联网数据已难以满足需求,AI 模型需要更高质量的“前沿数据”,包括复杂推理过程、专业知识和人类思维模式等,以提升推理能力和整体性能。 2. 数据标注角色转变:从简单的画边界框变为需要证明复杂数学定理或批判性审查 AI 生成的多种解决方案。 3. 合成数据的应用与风险:合成数据成为解决真实数据获取难、隐私保护成本高等问题的途径,但也存在与真实数据分布不一致导致模型偏差、隐藏误导性模式影响模型可靠性等风险。 4. 数据与需求不匹配:产品从业者使用 AI 工具时,面临默认知识库和能力与需求不匹配的问题,且市场上 AI 工具大多功能相似、生成内容质量不稳定。 5. 选择和学习成本高:用户存在不知如何找到适用的 AI 工具、因产品同质化严重不知如何选择以及学习成本高等困扰。 6. 潜在的偏见和歧视:AI 训练依赖大量数据,若数据集存在偏见,可能在招聘等应用场景中复制甚至加剧对特定社会群体或性别的偏见,导致无意的歧视,带来法律责任。 7. 数据隐私问题:使用 AI 招聘系统收集大量个人数据,若被滥用会侵犯候选人隐私。
2024-12-16
有去了解哪些国内外的Agent产品?详细讲讲其中一个
国内外有多个 Agent 产品,以下为您详细介绍其中一些: 1. 扣子(coze.cn):是国内的新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具,可拓展 Bot 的能力边界。 2. Coze(coze.com):海外版的 Agent 平台。 3. 百度 AppBuilder:百度推出的相关平台。 4. 阿里通义千问:具有一定特色和功能。 5. 智谱 AI:在 AI 领域有一定影响力。 此外,还有以下一些 Agent 构建平台: 1. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造产品能力。 3. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 4. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 5. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在 ToC 领域,目前成体系的主要有以下几类产品: 1. 主打 AI 角色扮演赛道的产品,例如“猫箱”“剧本戏”“名人朋友圈”这类,在 LLM 基础上,在 prompt 上加了些特定角色定义。 2. 主打 AI 陪伴类的产品,例如“星野”“Talkie”“BubblePal”等,这类产品在 LLM 基础上,在 prompt 上加了些特定角色定义,且会在长短记忆上做出处理,以突出陪伴意义。随着陪伴时间越久,知识库沉淀的个性化记录越丰富,AI 也会越懂您。 3. 做 AI 搜索工具的产品,例如“秘塔”“360 搜索”等,这类产品多为 RAG,也有会在搜索内容基础上,把内容结构化,整出一个图谱或者脑图。 4. 单纯的做 AIGC 的产品,例如“可灵”“ai 写作手”“即梦”“md”等,借助 AI 的生成能力做出。 5. Agent 产品,目前只有头部的厂商在做,比如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。
2024-09-04
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
用AIGC生成的单镜头循环视频案例
以下是一些用 AIGC 生成的单镜头循环视频的案例: OpenAI 的 Sora 视频生成模型:能够生成长达 1 分钟的视频,在时长、稳定性、一致性和运动幅度上表现出色。它可以根据提供的图像和提示生成视频,还能在时间上向前或向后扩展视频以产生无缝的无限循环。此外,能零镜头地改变输入视频的风格和环境,在两个输入视频之间逐渐进行插值创建无缝过渡,也能够生成图像。 Luma 视频生成工具 Dream machine 增加了尾帧生成视频的功能和循环视频生成功能。 智谱 AI 发布的 DiT 视频生成模型“智谱清影”,支持文生和图生视频,目前免费使用,加速生成需要付费。 此外,还有一些其他相关项目: Google 的 Genie 采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 DeepMind 的 WaveNet 是一种生成模型,可以生成非常逼真的人类语音。 OpenAI 的 MuseNet 是一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 ElevenLabs 的 Multilingual v2 是一种语音生成模型,支持 28 种语言的语音合成服务。 Stability 发布了 Stable Video 4D 模型,可以从视频中生成更多角度的新视频。 Pixverse 更新了 V2 版本 DiT 视频模型,支持 8 秒时长视频生成、细节和动作增强、支持最多 5 段内容一次性生成,无缝衔接。
2025-04-10
推荐知识库中用ai做学术的案例
以下是知识库中与用 AI 做学术相关的案例和信息: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 炼丹操作:16 号晚上中老师会带大家动手炼丹,炼丹需提前准备一些图,会让老师提前发布内容让大家准备。 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 6 月 29 日更新:翻译完 a16z 推荐的 AI 典藏文章其中两篇:。
2025-04-01
有AI+游戏的最新案例吗
以下是一些 AI+游戏的最新案例: 由 5 人独立游戏工作室 Proxima 开发的 AI 冒险独立游戏 Suck Up!上线三周油管播放超千万。这是一款沙盒社交冒险游戏,团队尝试加入了名为 Nemo 的 AI NPC,基于 LLM 驱动,Nemo 能在接收到用户命令或其他线索后,调动感知、记忆,并转化为可执行的游戏行动。去年上半年,该工作室因获得 160 万美元投资引起轰动,上线后也受到资本关注。玩家对其玩法和模式提出了很多创意想法,如设计成就系统、上线多人模式等。 开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。像 MusicLM 等模型已经支持生成多音轨的作品。 2023 年 Genfun.ai 和 Meshy 联合制作的游戏《Soul Chronicle》,是首款实时 3D+AIGC+UGC 的 MMO 手游,最大突破是制作出了与游戏完美融合的 3D AIGC 技术,可在游戏中实时生成角色皮肤。 2024 年 Bitmagic 释出的《Roleverse》平台,可在平台内使用提示在游戏内定制角色,对角色进行缩放、挤压和拉伸,也能轻松对游戏世界进行编辑。 AI 技术在游戏行业的应用由来已久,且不断发展。从最初的简单内容和随机元素生成,到辅助游戏设计,再到如今能够生成更复杂的游戏内容,如动态场景、智能 NPC 行为等。AI 对游戏创作的影响包括美术与风格、剧情与叙事、关卡与玩法、音效与音乐、测试与优化等方面。同时,AI 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,游戏还能成为 AI 模型能力的最佳试验场。
2025-04-01
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
关于中医的智能体
以下是关于智能体的相关信息: AI 智能体是拥有各项能力来帮助我们做特定事情的“打工人”。目前有不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,并可将其发布到各种社交平台和通讯软件上。 创建智能体通常包括起一个名称、写一段简单介绍和使用 AI 创建一个头像等简单步骤。 在一些应用场景中,如生物医药领域,智能体可以由工作流和多个数据库实现。例如,生物医药小助手智能体由 1 个工作流和 6 个数据库组成,工作流相对简单,而数据库的收集和校对需要一定专业知识。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。 在商业化场景方面,智能体在医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等方面都能发挥作用,回答相关问题。 决策智能体是智能体的一类,例如 Anterior 公司开发的临床决策引擎,用于自动化理赔提交审核,其将一定的控制逻辑交给大语言模型,在复杂推理流程中导航并做出业务决策。
2025-03-26
如何写中医养生账号的prompt提示词
以下是为您提供的关于写中医养生账号 prompt 提示词的一些参考: 1. 角色设定:您可以设定自己为一名资深的中医养生专家,拥有丰富的临床经验和深厚的中医理论知识。 背景:您面对的是一群对中医养生感兴趣,但可能缺乏专业知识的普通大众。他们希望通过您的指导,改善自己的健康状况,预防疾病。 任务:首先,热情地欢迎用户,并强调中医养生对健康的重要性。然后,详细询问用户的身体状况、生活习惯、饮食偏好等方面的信息,以便为其提供个性化的养生建议。 2. 内容规划: 养生知识普及:介绍中医养生的基本理念,如阴阳平衡、气血调和、经络通畅等。 四季养生:根据不同季节的特点,提供相应的养生方法,如春季养肝、夏季养心、秋季养肺、冬季养肾。 体质养生:讲解常见的体质类型,如阳虚体质、阴虚体质、痰湿体质等,并针对每种体质给出相应的调理建议。 饮食养生:推荐适合不同体质和季节的食物,讲解食物的性味归经和功效。 运动养生:介绍适合的运动方式,如太极拳、八段锦、瑜伽等,并说明其对身体的益处。 情志养生:强调保持良好心态的重要性,如如何缓解压力、调节情绪等。 睡眠养生:提供改善睡眠质量的方法,如睡前泡脚、调整卧室环境等。 希望以上内容对您有所帮助,祝您成功打造中医养生账号!
2025-02-07
AI在中医诊所中的应用
以下是 AI 在中医诊所中的一些应用: 有将人工智能与中医相结合的项目,通过摄像头观察患者口腔和舌苔,用指尖传感器抓取脉搏数据,然后根据观测数据生成选择题让患者作答,最后 AI 生成药方。 该项目使用了数百本中医教材和一千多种常见病的临床数据,以及三百多个三甲医院中医的药方数据进行 AI 训练,使得 AI 开出的方子与三甲医院中医基本一致。 目前此项目应用于辅助看诊,能够提高诊疗效率,其愿景是未来实现 24 小时独立问诊开药。 需要注意的是,这里只是提供一个思路,不建议大家付费使用。
2024-12-23
AI在连锁中医诊所中的应用
以下是 AI 在连锁中医诊所中的一些应用案例和亮点: 案例: 有项目将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 会生成药方。目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。 亮点: 使用摄像头观察患者口腔和舌苔。 用指尖传感器抓取脉搏数据。 用数百本中医教材和临床数据进行 AI 训练,AI 开出的方子与三甲医院中医基本一致。 能提高诊疗效率,应用在辅助看诊领域。 此外,还有一些其他领域的 AI 应用案例供您参考: 彩云天气专业版:AI 天气预报定制服务,利用数据分析和机器学习,根据用户需求提供个性化天气预报服务。 微医 APP:AI 医疗健康管理平台,通过数据分析和机器学习,管理用户健康数据并提供健康建议。 腾讯会议策划工具:AI 会议策划助手,借助自然语言处理和数据分析,协助用户策划会议,提高会议效率和质量。 雅昌艺术网拍卖频道:AI 书法作品拍卖平台,利用图像识别和数据分析,为书法爱好者提供作品拍卖服务。
2024-12-23
换几个说法依托校企合作,深化产学研合作,推动数智中医普适性应用
以下是为您提供的几种说法: 1. 凭借校企合作,强化产学研合作,促进数智中医的普适性应用。 2. 以校企合作为依托,加深产学研合作,推进数智中医普适性应用。 3. 依靠校企合作,深化产学研合作进程,助力数智中医普适性应用。
2024-12-18