Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用 AI 对视频内容进行概括总结

Answer

使用AI对视频内容进行概括总结通常涉及视频分析、语音识别、自然语言处理等技术。以下是一些步骤和工具,可以帮助你实现视频内容的AI概括总结:

步骤:

  1. 视频分析

    • 使用AI工具对视频进行帧分析,识别关键场景和对象。
  2. 语音识别

    • 将视频中的语音转换成文本。这通常通过自动语音识别(ASR)技术实现。
  3. 文字识别

    • 如果视频中包含文字,使用光学字符识别(OCR)技术将这些文字转换成文本。
  4. 自然语言处理

    • 对转换后的文本进行分析,提取关键信息和主题。
  5. 内容摘要

    • 使用文本摘要技术,将提取的关键信息缩减成简短的总结。
  6. 情感分析

    • 确定视频中传达的情感或语气,这有助于更准确地概括视频内容。
  7. 时间戳标记

    • 将总结与视频中的特定部分关联,提供时间戳标记。
  8. 生成摘要

    • 将所有信息综合起来,生成视频内容的概括总结。

工具:

  1. Google Cloud Video Intelligence API

    • 提供视频分析服务,可以识别视频中的物体、场景和情感。
  2. IBM Watson Media

    • 提供包括语音识别和自然语言理解在内的多种服务。
  3. Amazon Rekognition Video

    • 用于视频分析,可以识别视频中的人脸、物体和场景。
  4. Rev.com

    • 提供视频转录服务,可以生成视频的文字摘要。
  5. Scribie

    • 提供视频字幕和转录服务,可以生成文字摘要。
  6. Otter.ai

    • 一个语音笔记应用程序,可以实时转录视频和音频内容。
  7. Happy Scribe

    • 提供自动和手动视频转录服务,支持多种语言。
  8. Kapwing

    • 一个在线视频编辑平台,提供视频字幕和转录功能。
  9. Sonix.ai

    • 使用AI技术快速转录视频和音频内容。
  10. Descript

    • 提供视频和音频的转录、编辑和摘要功能。

使用这些工具时,你可能需要结合多个服务来实现完整的视频内容概括总结。例如,你可以使用Google Cloud Video Intelligence API进行视频分析,然后使用Otter.ai进行语音识别,最后使用Descript进行文本摘要。这样,你就能获得一个结构化、内容丰富的视频概括总结了。

Content generated by AI large model, please carefully verify (powered by aily)

References

用 Gemini 拆解视频

总结性概要:1.在对图片和视频内容进行分析的过程中,出现了一些问题和改进。首先,尽管OCR技术能够识别英文并解读内容,但在执行过程中存在疏漏,如只识别出部分内容(例如10个中的7个),并在第二次提示后虽有所改进,但效果仍不理想。此外,还出现了幻觉问题,即在分析新内容时,系统错误地重复了之前图片的分析结果。1.更换浏览器后,视频分析的准确性得到了提升。在进一步询问视频内容与星际争霸2剧情的一致性时,系统出现了错误并重复了之前的结果。画风解析方面,虽然得到了正确的结果,但结果的表述较为微妙。在叙事手法和拓展信息的询问上,系统能够提供相对准确的内容,并能给出具体例子,显示出对视频内容的完全理解。最后,在探讨仿照续集的解析能力时,系统给出了四点有价值的建议,这些建议对于自媒体创作者来说是很好的切入点。测试过程:

Sora 原理解释

1.收集视频及其文本标注:初始步骤是收集大量视频数据,并获取或创建这些视频对应的文本标注。这些文本简要描述了视频内容,是训练模型理解视频主题的关键。2.预处理视频数据:对视频进行预处理,包括调整分辨率、格式转换、裁剪长度等,以确保数据格式统一,适合模型处理。3.生成高度描述性的文本标注:使用DALLE3的技术,首先训练一个模型,这个模型专门用于为视频内容生成高度描述性的文本标注。这一步是为了提升文本标注的质量,让其更加详细和具体。对训练集中的所有视频应用这个模型,产生新的、更加详细的文本标注。4.视频压缩和时空潜伏斑块生成:开发并训练一个视频压缩网络,将高维的视频数据压缩到一个低维的潜在空间,简化后的表示更容易被模型处理。将压缩后的视频表示分解成时空潜伏斑块,这些斑块既包含空间上的信息也包含随时间变化的信息。5.利用Transformer架构:

夙愿:AI 快速总结群聊消息

点击下载按钮,会弹出下面这个窗口,你可以选择多种字幕格式,带时间的或者不带时间的:接下来,还是老办法,将字文字内容全选复制发送给GPTs即可。当然,总结完视频内容之后你继续向AI提问更多细节内容或者与它探讨视频内容。

Others are asking
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
视频内容概括的ai
以下是关于视频内容概括的 AI 相关知识: 除了聊天内容,AI 还能总结不超过 2 万字的文章。例如,将文章全选复制粘贴给 GPTs 即可进行总结,GPT4 能识别重点内容。 对于 B 站视频,若视频有字幕,可通过安装油猴脚本获取字幕。安装后刷新浏览器,点击字幕会出现“下载”按钮,可选择多种字幕格式。获取字幕后全选复制发送给 GPTs 就能实现视频内容总结。 在技术原理方面: 生成式 AI 生成的内容称为 AIGC。 相关技术名词包括 AI(人工智能)、机器学习(包括监督学习、无监督学习、强化学习)、监督学习(有标签的训练数据)、无监督学习(自主发现规律,如聚类)、强化学习(从反馈学习)、深度学习(参照人脑神经网络)、生成式 AI(可生成多种内容形式)、LLM(大语言模型)。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-04-09
RAG内LLM的主要作用,简单概括
RAG(检索增强生成)中LLM(大语言模型)的主要作用包括: 1. 利用外部检索到的知识片段生成更符合要求的答案。由于LLM无法记住所有知识,尤其是长尾知识,且知识容易过时、不好更新,输出难以解释和验证,容易泄露隐私训练数据,规模大导致训练和运行成本高,通过RAG为LLM提供额外且及时更新的知识源,有助于生成更准确和有用的回答。 2. 在RAG的工作流程中,LLM接收整合后的知识片段和特定指令,利用其推理能力生成针对用户问题的回答。 3. 事实性知识与LLM的推理能力相分离,LLM专注于运用推理能力处理外部知识源提供的信息。
2025-03-08
RAG是什么,简单概括
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 简单来说,它通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 RAG 对于 LLM 来说很重要,因为 LLM 存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。 而 RAG 具有一些优点,如数据库对数据的存储和更新稳定,数据更新敏捷且可解释,能降低大模型输出出错的可能,便于管控用户隐私数据,还能降低大模型的训练成本。 RAG 概括起来是知识检索+内容生成,可以理解为大模型的开卷考试,其主要组成依次是数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。其核心在于能否将内容检索得又快又准。 推荐阅读: 如何让 LLM 应用性能登峰造极:https://mp.weixin.qq.com/s/Kr16ub_FN6pTF6acse6MA 大模型主流应用 RAG 的介绍——从架构到技术细节: https://luxiangdong.com/2023/09/25/ragone/ 高级 RAG 技术:图解概览: https://baoyu.io/translations/rag/advancedragtechniquesanillustratedoverview
2025-03-08
一句话概括WaytoAGI是什么?
“通往 AGI 之路”(WaytoAGI)是一个由热爱 AI 的专家和爱好者共同建设的致力于人工智能学习的中文开源知识库和社区平台。它为学习者提供了系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,内容包括 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,并提供丰富的学习资源,如文章、教程、工具推荐以及最新的行业资讯等。此外,还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。同时,WaytoAGI 还孵化了离谱村这一千人共创项目,目标是大家一起用 AI 构建一个离谱世界。
2025-02-21
概括论文主要内容
以下是对这三篇论文的主要内容概括: 《20240301:1bit LLMs》 作者:Shuming Ma 等 核心观点:提出新的 1bit LLM 变体 BitNet b1.58,在保持与全精度 Transformer LLM 相同性能的同时,显著降低延迟、内存、吞吐量和能源消耗。 亮点:定义新的训练高性能且成本效益的 LLM 的缩放法则和方法,开启为 1bit LLMs 设计特定硬件的新计算范式。 核心贡献:在 3B 模型大小时,与 FP16 LLM 基线在困惑度和端任务性能方面匹配,同时在内存、延迟和能源消耗方面有显著提升。 动机:解决随着 LLMs 规模和能力快速增长带来的部署挑战和环境经济影响。 《20240227:ScreenAI》 作者:Gilles Baechler 等 核心观点:介绍专门用于理解和处理用户界面和信息图表的视图语言模型 ScreenAI。 亮点:通过结合 PaLI 架构和 pix2struct 的灵活拼贴策略,以及在独特的数据集混合上进行训练,实现了在 UI 和信息图表理解任务上的新最佳性能。 核心贡献:在只有 50 亿参数的情况下,在多个基于 UI 和信息图表的任务上取得新的最佳性能,在其他任务上也表现出色。 动机:解决 UI 和信息图表的复杂性,应对其对单一模型理解、推理和交互提出的挑战。 《20240305:Claude 3》 作者:Anthropic 核心观点:介绍 Anthropic 开发的 Claude 3 模型家族,包括 Opus、Sonnet 和 Haiku,在多模态输入、推理、数学和编码方面表现出色,并分析了安全性和社会影响。 亮点:在多个基准测试中取得最先进的结果,非英语语言流畅度提高,适合全球受众;Claude 3 Opus 在推理、数学和编码方面设定新标准,Haiku 是最快速且成本最低的模型,具备视觉能力。 核心贡献:通过多模态输入能力和工具使用提供丰富上下文和扩展用例。 动机:致力于开发安全、负责任的 AI 系统,支持企业自动化任务、生成收入、进行复杂的财务预测和加速研发。
2025-01-19
简要概括《奇点临近》这本书的内容
《奇点临近》是雷·库兹韦尔的新作,书中描述了宇宙与人类发展的六个阶段。预言未来几十年内技术将迅速提升,改变人类生活,比如通过脑机接口等技术,人类能提升认知能力、逆转衰老、实现数字永生。但这些技术也带来潜在风险,如 AI 失控和基因编辑滥用。库兹韦尔的预见为我们描绘了一个激动人心又充满挑战的未来。
2024-12-18
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31