Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyUI的工作流如何一键部署到云服务器

Answer

ComfyUI 是一个基于 Python 的用户界面库,用于构建和可视化机器学习工作流。要将 ComfyUI 的工作流部署到云服务器上,可以参考以下步骤:

  1. 在本地安装 ComfyUI 库,并创建一个工作流。
  2. 使用 ComfyUI 的部署工具,将工作流打包成一个 Docker 容器。
  3. 将 Docker 容器上传到云服务器,并在服务器上运行容器。
  4. 在云服务器上配置网络和安全设置,以确保工作流可以被外部访问。
  5. 使用 ComfyUI 的 API 或前端界面,与部署在云服务器上的工作流进行交互。

具体的部署步骤可能因云服务器的类型和配置而有所不同。可以参考 ComfyUI 的文档和相关教程,以获取更详细的指导。

Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看

就可以生成这样一个节点,可以选择我们安装好的大模型,并且后面还有三个连接点,可以指向下一个模块。我们按住clip后面的点进行拖拽,点击【CLIPTextEncode】,得到一个提示词输入框。同理,我们可以再加一个提示词框,形成了一个正向提示词和一个负向提示的架构。为了后面更方便使用,我们还可以点击右键,给节点添加颜色。比如,正向提示词为绿色,负向提示词为红色。为了方便管理,我们可以再添加一个组,放在组里的节点可以一起移动,方便了我们后面做一些模组管理。接下来,我们需要使用采样器来给提示词内容添加噪声。从提示词节点后面再次拉出一根线,选择【KSampler】。这里面可以看到我们熟悉的参数:种子数、迭代步数、CFG、采样器等等。我就不做过多解释了,学过webUI的理解起来都很容易。这时,我们就可以将模型和负向提示词全部连上了。接下来,设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】。

【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看

我们就可以在这个节点里面填写想要输出的尺寸,和一次性生成的数量。接下来,我们要使用VAE来对之前的噪声进行解码,从【LATENT】中拉出一个节点,选择【VAEDecode】。建立好之后,将最开始的VAE节点与之相连。最后,我们要输出图片,从VAE解码的节点中的【IMAGE】中拉出一根线。选择【SaveImage】,这样我们每次生成的图片都会存放在output文件夹里面。如果不想每次都保存,可以选择下面的【PreviewImage】。到此为止,我们就建立好了一个简单的文生图工作流。可以在右侧点击【Save】,保存这个工作流,那么下一次我们要进行文生图操作的时候,只需要载入这个工作流就可以了,不用再重复搭建。我们填入一套提示词,来测试一下这套工作流的使用情况,点击【Queue Promot】开始渲染。出图完成,说明我们的工作流可以正常运行了,撒个花吧,庆祝我们的第一次搭建成功。放大一下看看,和webUI的成图效果没有什么区别。

AIGC Weekly #54

发现一个项目,可以把你本地的ComfyUI工作流一键变成在线服务。你可以选择使用原始的ComfyUI界面,或者使用他们生成的API,自己的前端界面。很容易就可以吧ComfyUI的工作流变成产品,比如直接搞个SVD视频生成的服务。

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
有没有一键生成流程图的AI。参考[一招搞定:用AI秒生成专业流程图](https://mp.weixin.qq.com/s/cSLHwMFQhfU-VjSvRDJhzw)
目前有一些可以一键生成流程图的 AI 工具,例如: Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,可以快速、高效地创建专业的流程图,满足各种工作和项目需求。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-18
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
我是小白,想做一个自媒体全媒体一键管理AI,帮助自媒体创业者一键管理全媒体平台的数据,内容,客户以及产品,怎么实现
要实现自媒体全媒体一键管理 AI 帮助自媒体创业者管理全媒体平台的数据、内容、客户以及产品,可以参考以下思路: 首先,对于将 PDF 一键变成能玩的可视化网页,整体思路来自于归藏。在藏师傅的基础上稍作修改的 prompt,目前在 Claude 3.7 Sonnet 效果最佳,其他大模型生成的审美可能稍差。可以将 prompt 用于 Claude 自己的官网、trea 海外版、cursor 等能使用 Claude 3.7 的产品。 使用时,prompt 整体基本可复制,但细节部分需修改: 1. 作者信息部分改成自己的内容。 2. 媒体资源部分,可加上自己特定要出现的图片/视频。不需要的直接删掉这一块。若使用网上现成的图片,直接右键复制图像链接;若是自己的图片,可使用图床服务(如 https://sm.ms/)托管图片生成公链,然后用 Markdown 格式贴到媒体资源处。注意文档上传时,图片不要跟着文档一起上传,可能会有显示错误,尽量用公链。 虽然上述是关于将 PDF 变成可视化网页的方法,但其中的思路和技术或许能为您实现自媒体全媒体一键管理 AI 提供一些启发和借鉴。
2025-03-13
AI一键生成海报
以下是关于 AI 一键生成海报的相关内容: 即梦生图 2.1 版本能够根据简单的提示词智能理解创意需求,一键生成融合图片内容与中英文文本的海报。应用场景广泛,包括 LOGO 设计、表情包生成、节日与节气海报制作等。 例如,在 LOGO 设计中,提示词可以是“皮克斯风格,五彩缤纷风格,文字‘烧拍’,超高清”;在表情包生成中,提示词可以是“卡通风格,表情包,可爱的小熊猫,四宫格分别是文字是‘多读书’‘多看报’‘少吃零食’‘多睡觉’”;在节日与节气海报制作中,如冬至海报,提示词可以是“水墨画风格,冬至海报,汤圆,梅花,雪,海报右上角大字草书字体‘冬至’,中间下方文字‘瑞雪兆丰年’,超高清”。 此外,在一些活动中,如 AI 市集,AI 不仅能调酒、占卜,还能自动生成海报。例如,有摊主开发的 AI 能在提供鸡尾酒配方的同时生成海报。 在女神节海报设计方面,可以利用即梦 AI 工具,操作简单,只需 3 步:打开即梦 AI 选择“图片生成”功能,模型选择图片 2.1 并输入提示词,点击生成即可。同时还提供了多个海报案例的提示词,如案例一的提示词为“女神节主题,3D 设计,梦幻氛围,明亮春天场景,花田,数字 38,天空‘女神节’,五彩缤纷的蝴蝶,晴朗的蓝天,茂密的绿色草地,盛开的花朵,柔和光线”;案例二的提示词为“粉色主题,梦幻氛围,数字 38,心形气球,花卉装饰,玫瑰花,漂浮的花瓣,柔和的云朵,美丽的湖面倒影,奇幻风格,柔和的色调,庆祝场景”;案例三的提示词为“妇女节,3D 设计,粉色主题,大号装饰数字 38,爱心,郁金香花朵,柔和光照,背景城市天际线,精致花卉装饰,优雅节日氛围,金色文字,春天氛围,细致鲜艳”。
2025-03-09
利用智能体可以实现一键生成ppt吗
利用智能体可以实现一键生成 PPT。以下是一些相关的信息: 爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,旗下的 AiPPT.cn 致力于打造“下一代个人与组织的 Ai 工作站”,能够帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场包括市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 增强版 Bot 作为基于 AI 驱动的智能创作平台,可以实现一站式内容生成,包括 PPT 一键生成。用户在对话框输入诉求,如“帮我生成一篇包含以上架构风格的完整 PPT”,即可生成幻灯片内容及相关模板选择。 此外,2024 年 6 月 22 日更新的研究报告中,《》提到 AiPPT 是爱设计推出的 AI 大模型与 PPT 场景深度结合的产品,能够实现一键生成专业 PPT,并提供丰富模板和低创作门槛。
2025-03-05
一键抠图
以下是关于一键抠图的相关内容: 【TecCreative】帮助手册: 操作指引:点击智能抠图卡片,上传需要抠出主体物的图片。 可参考视频: 【SD】图片高清化+面部修复+一键抠图,一些你不知道的事儿: 背景去除:需要安装插件REMBG,安装地址是https://github.com/AUTOMATIC1111/stablediffusionwebuirembg.git。安装好之后重启,就有选项框。使用时模型选第一个u2net,直接点击生成。抠图效果不错但边缘轮廓可能有黑边,可通过点击Alpha matting调整参数(Erode size:6、Foreground threshold:143、Background threshold:187)去掉黑边,还可直接生成蒙版。此外,还有专门做服装和动漫抠图的模型。 若想要插件,可添加公众号【白马与少年】,回复【SD】获取。 【SD】用AI给老照片上色:将照片放入后期处理中,使用GFPGAN算法将人脸变清晰,可参考文章——。五官重绘后,若要将头发、衣服等元素变清晰,可将图片发送到图生图中,打开stableSR脚本放大两倍,切换到sd2.1的模型进行修复,vae选择vqgan,提示词可不写。
2025-03-04
AI服务器配置
以下是关于 AI 服务器配置的相关内容: 对于 Coze AI 机器人对接微信的服务器配置: 1. 如果按照上一篇教程操作,此次配置只需修改容器编排模板。最新的容器编排模板如下,同时提供无描述性的参考配置方便新手直接参考使用。 2. 若之前没有容器编排模板,新建一个即可,新建和修改逻辑类似。 3. 更新后的编排模板,若之前创建过相似机器人容器编排服务,建议先删除以防冲突,删除步骤如下。 4. 基于新的编排模板创建新的容器编排,然后启动服务。 5. 服务启动成功后,进入 COW 服务扫码绑定微信机器人,具体步骤参考上一篇入门教程。 对于视频相关的 AI 服务器配置: 1. 购买服务器:直接点击去购买:https://buy.cloud.tencent.com/lighthouse?blueprintType=APP_OS&blueprintOfficialId=lhbpr8j2ftq0&regionId=8&zone=apbeijing3&bundleId=bundle_rs_mc_med1_02&loginSet=AUTO&from=lhconsole ,并根据以下配置购买。 2. 购买并付款完成后,回到服务器“控制台”。 3. 点击服务器卡片空白处添加防火墙,添加 8887、8080 端口。 4. 点击右上角“登录”按钮,扫码验证后在命令行窗口中操作,注意复制粘贴代码的方式和命令执行完毕的标志。 5. 在命令行中依次输入相关命令。 6. 保存并打开外网面板地址,输入账号和密码。
2025-04-10
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
如何解决deepseek一直“服务器繁忙,请稍后再试。”的问题?
如果您的 DeepSeek 一直显示“服务器繁忙,请稍后再试”,可以尝试以下方法: 1. 秘塔搜索: https://metaso.cn 2. 360 纳米 Al 搜索: https://www.n.cn/ 3. 硅基流动: https://siliconflow.cn/zhcn/ 4. 字节跳动火山擎: https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 5. 百度云千帆: https://login.bce.baidu.com/ 6. 英伟达: https://build.nvidia.com/deepseekai/deepseekr1 7. Groq: https://groq.com/ 8. Chutes: https://chutes.ai/app 9. 阿里云百炼: https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 10. Github: https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground 11. POE: https://poe.com/DeepSeekR1 12. Cursor: https://cursor.sh/ 13. Monica: https://monica.im/invitation?c=ACZ7WJJ9 14. Lambda: https://lambdalabscom/6 15. Cerebras: https://cerebras.ai 16. Perplexity: https://www.perplexity.ai 17. 阿里云百炼: https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 另外,国内版的 Trae 目前有三个模型可供选择,都是免费无限量使用,包括 DeepSeek 系列模型,速度令人满意,能够较快地给出回答,没有遇到“服务器繁忙”的提示。 您还可以通过以下步骤解决“服务器繁忙”的问题: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 2. 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 3. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 4. 添加“DeepSeekR1”模型。 5. 打开联网功能,还可以支持联网搜索使用 R1。
2025-03-16
Deepseek网页端使用,总是出现服务器繁忙,请稍后再试,怎么办?请注意,我所使用的是Macbook
如果您在使用 DeepSeek 网页端时总是出现“服务器繁忙,请稍后再试”的提示(使用的是 Macbook),可以尝试以下方法: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。然后打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 2. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeekR1”模型。 3. 如果上述方法不行,还可以尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1
2025-02-26
Deepseek网页端使用,总是出现服务器繁忙,请稍后再试,怎么办
如果在 DeepSeek 网页端使用时总是出现“服务器繁忙,请稍后再试”的情况,您可以尝试以下方法: 1. 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。然后打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 2. 配置“DeepSeekR1”模型的 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeekR1”模型。 3. 如果上述方法不行,您还可以尝试以下替代网站: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 需要注意的是,部分网站可能需要特殊网络环境。
2025-02-26
如何在本地服务器上微调LLM
在本地服务器上微调 LLM 可以参考以下内容: 1. 提示词工程: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口,可改为回传给 user 角色。 2. 微调方法: 传统微调:采用在通用数据集上预训练的模型,复制模型后在新的特定领域数据集上重新训练,但大型语言模型微调面临训练时间长、计算成本高等挑战。 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战,参数可以是现有模型参数的子集或全新的参数。 为使微调达到最佳效果,应从明确目标和高质量数据集开始,使用体现所需输出类型的数据,进行迭代测试,从小的渐进变化开始并评估结果。 对于 OpenAI 的模型,微调包括使用其提供的 API 在数据集上进一步训练,需调整超参数并监控性能。对于开源 LLM,微调可能需要更多实践工作,包括设置训练环境、管理数据流及调整模型架构。 对于需要快速迭代新用例的场景,微调作用较小。要实现微调功能,需创建大型训练数据集,整理成适当格式,启动训练任务并评估性能。建立模型改进工作流程,监控性能变化,依据反馈改进模型,记录生成的模型及评分指标,许多 LLMOps 平台能自动收集和显示最佳数据,方便微调。
2025-02-21
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
本地部署
SDXL 的本地部署步骤如下: 1. 模型下载:SDXL 的大模型分为两个部分,第一部分 base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化以生成细节更丰富的图片。此外,还有一个配套的 VAE 模型用于调节图片的画面效果和色彩。这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 2. 版本升级:要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:完成上述步骤后启动 webUI,即可在模型中看到 SDXL 的模型。正常使用时,先在文生图中使用 base 模型,填写提示词和常规参数(如尺寸设置为 10241024)进行生成。然后将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点再次点击生成。 5. 插件辅助:若觉得操作麻烦,可在扩展列表中搜索 refine 安装插件并重启,启用插件后可在文生图界面直接使用 refine 模型进行绘画。 另外,关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG,步骤包括导入依赖库(如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型)、从订阅源获取内容(通过指定函数从 RSS 订阅 url 提取内容,并将长文本拆分成较小的块附带相关元数据)、为文档内容生成向量(使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储),最终实现 RAG。
2025-04-13
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
如何部署自己私人AI
部署自己私人 AI 可以参考以下几种方式: 通过云服务器、dify、智能微秘书来免费搭建微信机器人: 1. 在宝塔面板的终端安装相关命令,这些命令位于/root/dify/docker 目录下。 2. 检查运行的容器数量,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 3. 在浏览器地址栏输入公网 IP(去掉后面的:8888),进入后邮箱密码随便填,建立知识库并进行设置。 4. 选择模型,国内模型有免费额度可选,如智谱 ai,获取钥匙并复制保存,创建应用进行测试和发布。 基于 Hook 机制的微信 AI 机器人: 1. 将 Administrators 改成“wxid_dna83ykqawl222”。 2. 若有 FastGPT 或者 OpenAI 的 key,将 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key;若没有,保持 Ai_Lock 为 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件双击运行。 5. 运行后会弹出微信登录框,正常登录微信,等待系统自动初始化必备文件。 6. 运行成功后,用“大号”给机器人发消息,拿到 wxid 并返回替换。 7. 添加完后,用小号登录,大号可对小号发号施令。 部署和训练自己的 AI 开源模型: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身资源、安全和性能需求选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,如开源的 BERT、GPT 等,也可自行训练基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-11
DEEP SEEK 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)
以下是关于 Deep Seek 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)的相关内容: 一、使用 Docker + RAGFlow + Ollama 搭建个人/企业知识库 1. 将 Ollama 部署的模型接入 GARFlow 返回 RAGFlow 中,打开右上角设置,进入模型提供商,配置 Ollama 相关信息,基础 URL 按要求设置,设置完成后点击确定。 导入一个 embedding 模型用于文本向量化,导入成功后设置系统模型设置,然后返回知识库创建知识库。 进入数据集,导入文件(可设置文件夹当作知识库),导入完毕后解析文件,解析速度取决于本机 GPU 性能,解析好后进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。 2. 使用 Ollama 本地部署 DeepSeek 模型 先下载 Ollama 程序,官方网址:https://ollama.com/ 。 下载默认到 C 盘(一般为固态盘,运行速度快),若想修改安装目录到 D 盘,后续会有说明。 下载完右下角会出现 Ollama 图标,打开命令行输入相关命令回车。 若显卡是英伟达 2060Super,可选择 Deepseekr1:14b 的模型,根据自身独立显卡性能下载。 下载速度慢可按 Ctrl+C 强制退出重新下载。 下载完毕后再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相关命令,下载好后直接退出终端。 二、Flowith 相关报道、采访、使用指南 |标题|发布账号|社媒来源|日期|链接| |||||| |ChatGPT 的对话框过时了?这款 AI 产品提供了一种很新的聊天方式|爱范儿|公众号|2024/04/29|| |Flowith:革新你的工作方式,体验节点式 AI 的超流畅生产力|程序那些事儿|公众号|2024/05/03|| |体验 Flowith:探索人机交互从传统聊天对话到画布式知识管理的转变|AI 兔子洞|公众号|2024/04/22|| |deepseek 服务器繁忙?硅基流不动?看看这篇,内含 18 个平台,可能是最全的 deepseek 方案。|佐佐的 AI 笔记|公众号|2025/02/06|| |满血版自部署 DeepSeekR1+知识库+联网搜索,体验下来可能就只剩下这家了!|字节笔记本|公众号|2025/02/12|| |DeepSeek 让 AI 圈卷出了新高度:Flowith 宣布 DeepSeek R1 现在免费提供!|字节笔记本|公众号|2025/01/27|| |ShowMeAI 周刊 No.15|上周最有讨论度的 6 个 AI 话题:自由画布类产品密集更新、多主体一致成发展趋势、AGI、开源…|ShowMeAI 研究中心|公众号|2025/01/21||
2025-04-10
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10