大模型是一种基于深度学习技术的自然语言处理模型,它通过对大量语料的学习,获得了类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。以下是一些大模型入门学习的教程:
以上是一些大模型入门学习的教程,希望对你有所帮助。
通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)
大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。作为一名程序员,我对大模型技术是非常向往的,但是因为是非科班出身,一直迟迟没有动手。在Llama3出来之后,我萌生了微调的想法,我的目的很简单,不是为了学习多么高深的知识,而是让自己先入门。入门最好的方式就是直接上手实操,这是也是之前的一系列教程中所强调的理念。由于市面上没有找到专门针对我们纯小白的教程,所以这篇教程就来啦!这篇教程的亮点教你如何购买算力,不再为本地电脑的配置不够而发愁手把手教你下载并部署Llama3模型,以前都是玩别人部署的,这次咱们玩自己的!)使用甄嬛数据集微调Llama3模型,并且针对微调后的模型进行实验了解微调的意义和概念但是这篇教程不会讲解微调的技术性原理以及文中会用到的Python代码。原因很简单,因为我是一位Java开发工程师,里面的代码我都是靠GPT4.0帮我读的另外这篇教程需要你充值50块钱,不过不是给我哦,是购买算力的预充值。我不想因为50块钱把你劝退,所以这里我要多说一句,免费的才是最贵的。看完我的教程,你绝对会认为这50块钱花的很值
面向开发者的LLM入门课程:地址:[https://github.com/datawhalechina/prompt-engineering-for-developers](https://github.com/datawhalechina/prompt-engineering-for-developers)简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。提示工程指南:地址:[https://www.promptingguide.ai/zh](https://www.promptingguide.ai/zh)简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。LangChain ?️?中文网,跟着LangChain一起学LLM/GPT开发:地址:[https://www.langchain.asia](https://www.langchain.asia/)简介:Langchain的中文文档,由是两个在LLM创业者维护,希望帮助到从刚进入AI应用开发的朋友们。LLMs九层妖塔:地址:[https://github.com/km1994/LLMsNineStoryDemonTower](https://github.com/km1994/LLMsNineStoryDemonTower)