Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

WaytoAGI 背后使用的知识库模型算法是哪家的

Answer

WaytoAGI 是基于 Aily 和云雀大模型开发的人工智能,其中:

  • Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。
  • 云雀是字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问你是谁

我是WaytoAGI专属问答机器人,基于Aily和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级AI应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布AI应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。

Others are asking
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
身份是小学语文老师,如何自学waytoAGI
以下是为您整理的相关内容: 1. 10 月 9 日小作业中提到:熟悉 waytoagi 知识库,并找到 Prompt 提示词框架文章,给出两个提示词框架和生成结果。框架一是“CRISPE 框架”,处理小学六年级同学丢钱引发的同桌纠纷,给出三种解决方式,包括调查真相、教育双方,全班寻找失物、避免误解,引导调解与反思。生成结果为详细的解决步骤。同时提到人工智能时代的三个基石是数据、算法、算力,数据和算法可在开源数据库等找到,算力可在云计算平台如 AWS、Google Cloud、Microsoft Azure 找到。 2. 6 月 11 日 AI 秒学团队中,有人分享了搭建聊天功能工作流的经历,提到在实践中不断迭代、调整和优化。一位纯社科背景的高校老师感谢 way to AGI 带文科生进入 agent 的“坑”,并提到小团队给予的帮助。 3. 问卷中,刘翔宇表示自己是国内一线互联网 AI 产品经理,愿意共同维护 WaytoAGI 开源社区,学习目标是了解 Comfy 基础理论等多方面,所在城市为北京。
2025-04-12
学习WaytoAGI的最佳路径是什么
学习 WaytoAGI 的最佳路径包括以下几个方面: 1. 了解最新的 AI 技术:WaytoAGI 像免费的“技术期刊”,能让您了解最新动态,还能教授实用技能,且开源免费。 2. 线上共学:通过线上共学方式,手把手教您应用 AI 技术,无论您是小白还是有一定基础,都能找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找对 AI 感兴趣的伙伴一起做事,WaytoAGI 是很好的平台。 使用 WaytoAGI 的方法: 1. 点开链接就能看:无需注册和花钱,直接点击链接:点击。 2. 想看啥就看啥:比如想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分,内容分类清晰。 3. 有问题还能问:看了还有不懂的,或者想跟别人交流,可以加入社群讨论。 此外,WaytoAGI 还有整活区,这里不是系统性学习的地方,而是一起做有趣事情的游乐场。在这里,您不用证明想法“有什么用”,可以尽情发挥对 AI 最天马行空的想象,鼓励把 AI 玩出新花样。
2025-04-10
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
数字人哪家技术最好
目前在数字人技术方面,腾讯的 MimicMotion 项目表现出色。它支持面部特征和唇形同步,不仅能用于生成跳舞视频,也适用于数字人领域。其具有基于置信度的姿态引导机制、基于姿态置信度的区域损失放大技术以及创新的渐进式融合策略,能确保生成的视频更加连贯流畅,减少图像扭曲和变形,并在可接受的计算资源消耗下实现任意长度视频生成。项目地址为:https://github.com/tencent/MimicMotion ,节点地址为:https://github.com/AIFSH/ComfyUIMimicMotion 。 此外,HeyGen 与 Sora 集成推出的全新数字人技术也值得关注,其由 AI 完全生成的虚拟人能够模拟并超越真人演员的动作、表情和行为,可灵活调整动作和表情,无需重复拍摄,且视频长度无限制,并非基于真人模型的“数字克隆”,而是全新的 AI 虚拟形象。
2025-03-27
最新推出的AIPPT是哪家公司推出的?
最新推出的 AiPPT 是由爱设计推出的。它是 AI 大模型与 PPT 场景深度结合的产品,能够实现一键生成专业 PPT,并提供丰富模板和低创作门槛。此外,像素绽放(AiPPT)完成了 B2 轮融资。在 AI 智库的月度榜单中,出海的 AiPPT 也有相关排名。其网址为 aippt.com 。
2025-03-20
数字人哪家最好
目前难以明确哪家数字人最好,不同数字人产品各有特点和优势。以下是一些相关信息供您参考: 数字人工具软件方面:实时驱动的数字人工具软件一年标准零售价在 4 6 万往上,非实时驱动的一个月 600 元,但效果差,市场价格混乱。 数字人运营服务方面:按直播间成交额抽佣。 适用品类和场景:适用于不需要强展示的商品如品牌食品饮料、虚拟商品,店播效果较好,不适用于促销场景和服装品类。 课程推荐:卡尔的 AI 沃茨的数字人课程,共 15 节视频课,持续更新,附赠课外社群辅导,建立了完整的数字人学习体系。 相关产品:Digen AI 具有强大的动态和静态同步能力,支持 20 种语言,是 Heygen 的强有力竞争对手。
2025-03-20
索引模型哪家的免费?
以下是一些免费的索引模型: 1. Trae 标配的 Claude3.5sonnet 模型免费不限量。Trae 是一款与 AI 深度集成,提供智能问答、代码自动补全以及基于 Agent 的 AI 自动编程能力的 IDE 工具,其编辑器所有功能原生支持中文,上手门槛低。 2. Stability AI 社区发布的模型,个人和组织可以免费将其用于非商业用途,包括科学研究;初创公司、中小型企业和创作者可以免费将其用于商业目的,只要年总收入低于 100 万美元。 此外,OpenAI 还发布了开源模型,包括 PointE、Whisper、Jukebox 和 CLIP。访问供研究人员的模型索引(https://platform.openai.com/docs/modelindexforresearchers)可详细了解其研究论文中介绍的模型以及 InstructGPT 和 GPT3.5 等模型系列之间的差异。
2025-03-13
目前最强的AI是哪家?
目前在 AI 领域,很难简单地确定哪家是最强的。Llama 3.1 是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡,标志着开放模型缩小了与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现出色,解决了 30 题中的 25 题,接近人类国际数学奥林匹克金牌得主的表现。 在国内,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异成绩,尤其在数学和编程方面表现突出。智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型,还有“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。 需要注意的是,AI 领域发展迅速,各模型的优势和表现也会随时间变化。
2025-03-13
manus是哪家公司的产品
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人(如 ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的 AI”。 Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。其核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。 Manus AI 的技术架构还包括以下几个关键组件: 1. 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 2. 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 3. 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 4. 内置多个 agents:Manus AI 通过内置多个智能体,实现了任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。其具有自主执行、类人工作模式、云端异步运行、持续学习和记忆等核心亮点。
2025-03-07
minimax的大模型算法热点
以下是关于 MiniMax 的大模型算法热点的相关内容: 1. MiniMax 有两个适合特定任务的大模型:MiniMaxText01 支持 400 万 token 的上下文,能应对超长文章;T2A v2(speech01turbo)拥有最好的声音复刻效果。可以通过其开放平台(https://platform.minimaxi.com/login )进行注册登录及实名认证。首次注册会赠送 15 元,API 消耗会消耗余额,生成一条 3 分钟的语音,文本模型消耗 1 分钱,语音模型消耗 5 毛钱,克隆音色有额外费用,现优惠 9.9 元。接着创建 API Key 并保存好,以及 groupid。还可以克隆声音,相关链接为 https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning ,有创建 voice id、上传复刻音频及音频 prompt、试听文本等操作,勾选用户协议点击“克隆”选项一段时间后完成克隆,使用填写的 voice id 生成声音。 2. MiniMax 推出了 MoE 架构的新模型,其“星野”是目前国内最成功的 AI 陪聊 APP。 3. MiniMax 近日发布新模型 MiniMax01,采用线性注意力机制和 MoE 架构,显著提升上下文处理能力,支持超长上下文(400 万 Token),在多项学术基准上表现优异,超越许多国际顶尖模型。其开源旨在促进长上下文研究和应用,加速 Agent 时代的到来,通过精细架构设计和训练策略,在处理长输入时实现接近线性的计算效率。
2025-03-28
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07