Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用字节的扣子(coze)实现多轮对话

Answer

Coze 是字节跳动旗下的智能对话机器人服务平台,你可以使用 Coze 实现多轮对话。以下是一些步骤:

  1. 创建一个 Coze 应用并配置你的模型:首先,你需要在 Coze 平台上创建一个应用,并选择一个适合你需求的模型。你可以选择使用预训练的模型,也可以上传自己的模型进行训练。
  2. 配置对话流程:在 Coze 中,你可以配置对话流程,包括设置对话轮数、添加对话节点等。你可以根据你的需求配置不同的对话流程。
  3. 训练你的模型:在配置完对话流程后,你需要训练你的模型。你可以使用 Coze 提供的训练数据进行训练,也可以上传自己的训练数据进行训练。
  4. 部署你的模型:在训练完你的模型后,你可以将其部署到 Coze 平台上,并开始使用它进行多轮对话。

需要注意的是,Coze 是一个智能对话机器人服务平台,它提供了一些工具和功能来帮助你实现多轮对话。但是,你需要根据你的需求和场景进行配置和调整,以确保它能够满足你的需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

安仔:我用 Coze 免费手搓了一个 24 小时英语陪练,根治了我多年的哑巴英语!

基于AI Bot的功能需求,还是一个主要以聊天为主的AI Bot,而且一般英语陪练都建议多一些对话轮数的记录,这样当然训练一些口语考试时,上下文才不会被突然忘记,改为20轮:

【图像流】用Coze的工作流创建随便虐的室内设计师

因为设置了图片上传、风格选择、需求描述三个环节,所以至少要携带3个轮次的对话。

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
多轮对话怎么做
多轮对话的实现方式如下: 1. 核心思路是让 AI 和您对目标的理解达成共识,保持一致,然后再开始创作,这样能增加创作的可控性。比如通过对生成图像的理解诱导和迭代来实现。 2. 有效的部分包括: 约束的弹性,在探索阶段给 AI 一定自由空间,而 prompt 一般是强约束的,更适合确定性的目标或者用于总结阶段。 情绪,情绪化能局部提升 AI 效能。 共识,您的理解和 AI 的理解要高度一致,在高共识性的背景下,调整和控制会更有效。 3. 注意事项: 如果经历很多轮的对话,可能会导致此次对话超过模型的 token 限制,ChatGPT 会遗忘之前的内容。建议当经历多轮对话后,可以新建一个聊天窗口,把完整的代码和需求背景输入给 ChatGPT,重新开启新的提问。 在自然的人类语言交流中,多轮对话常常伴随着指代问题的产生。为了提升对话系统的性能和用户体验,需要开发提示词来解决多轮对话中的指代消解问题,并确保模型能够在连续的交流中提供准确、连贯的回答。由于“指代消解”需要多轮对话来完成,单次交互无法达成,所以需要将测试形式进行转换,先解决“指代消解”的问题,然后再进行下一轮答复。
2025-01-07
单轮对话与多轮对话调用
单轮对话与多轮对话调用: 聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息格式化,然后交替使用用户消息和助手消息。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 百炼相关 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢? 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
单轮对话与多轮对话调用
聊天模型通过一串聊天对话作为输入,并返回一个模型生成的消息作为输出。尽管聊天格式的设计是为了多轮对话更简单,但它对于没有任何对话的单轮任务同样有用(例如以前由 textdavinci003 等指令遵循模型提供的任务)。 API 调用的例子中,messages 参数是主要的输入,必须是一个消息对象的数组,每个对象拥有一个 role(“system”“user”或“assistant”)和 content(消息的内容)。会话可以少至 1 条消息或者有许多条。通常,会话首先使用系统消息(“system”)格式化,然后交替使用用户消息(“user”)和助手消息(“assistant”)。系统消息有助于设定助手的行为,用户消息帮助指示助手,助手消息用于存储之前的响应。当用户的指令是关于之前的消息时,包含聊天历史记录将有所帮助。如果会话包含的 token 超出了模型的限制,则需要用一些方法去缩减会话。 此外,还存在一些与百炼相关的 Q&A: 如何调用工作流?在提示词写了让大模型调用 xxx 工作流,但实际总是不调用。文档里也没有写调用方式。 如何把开始节点的输入参数直接接入到代码节点中进行处理? 千问模型基本不能处理标点符号,在提示词中各种要求句尾不要有句号,可仍旧有。甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。同样的提示词,放在扣子中就可以去掉标点符号。 为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题很早就预测过了,同一个模型。 无论 prompt 怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在 max。 COW 调用百炼应用如何支持多轮对话么?
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
字节跳动开源的AGENT TARS
字节跳动开源的自学型 GUI Agent 名为 UITARS,具有以下特点和优势: 能够实现复杂任务自动化,支持跨平台操作,包括网页、桌面和移动端。 性能优于主流模型(如 GPT4 等)。 适用于复杂动态交互、表单填写、批量处理、在线预订等应用场景。 提供开发框架,支持桌面和网页端运行。 相关链接: 其核心能力包括界面识别与元素定位的感知能力、执行操作指令的行动能力、多步任务规划的推理能力以及记录并优化操作流程的记忆能力,能够实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。
2025-03-24
你如何评价字节的coze?
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。其主要特点包括: 1. 多语言模型支持:使用了大型语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 2. 插件系统:集成了超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展 Bot 的能力。 3. 知识库功能:允许用户上传和管理数据,支持 Bot 与用户数据交互,可以上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 4. 数据库和记忆能力:提供了数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 5. 工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供了大量灵活可组合的节点。 6. 多代理模式:在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。 7. 免费使用:目前对用户完全免费,用户可以利用其强大的功能而无需支付费用。 8. 易于发布和分享:用户可以将搭建的 Bot 发布到各类社交平台和通讯软件上,让更多的用户与之互动。 字节对 Coze 的官方解释是:新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。国内版网址:https://www.coze.cn ,官方文档教程:https://www.coze.cn/docs/guides/welcome ,大模型使用的是字节自研的云雀大模型,国内网络即可正常访问。海外版网址:https://www.coze.com ,官方文档教程:https://www.coze.com/docs/guides/welcome ,大模型有 GPT4、GPT3.5 等(可以在这里白嫖 ChatGPT4,具体参考文档),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html 。 Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。 Dify 和 Coze 都是大模型中间层产品,它们的异同点如下: 开源性:Dify 是开源的,允许开发者自由访问和修改代码,以便进行定制。Coze 目前没有明确信息表明其是否开源,可能更侧重于提供商业化服务和产品。 功能和定制能力:Dify 提供直观界面,结合 AI 工作流、RAG 管道、代理能力和模型管理等功能,支持通过可视化编排,基于任何 LLM 部署 API 和服务。Coze 提供丰富的插件能力和高效的搭建效率,还支持发布到多个平台作为 Bot 能力使用。 社区和支持:Dify 作为开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze 可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如 Dify。选择使用 Dify 或 Coze 时,开发者和企业需要根据自己的需求和目标来做出决策。
2025-02-10
字节有哪些AI产品
字节在 AI 领域推出了众多产品,包括从生产力到娱乐陪伴,从对话产品到 Agent 工具再到文生图等十几个 AI 应用,还推出了 AI 硬件,如今年 10 月能与豆包语音对话的 Ola Friend 耳机,近期还在研发 AI 眼镜。 生成 Logo 的 AI 产品有: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 AI 面试官的相关产品有: 1. 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和发送邀约。 2. 海纳 AI 面试:在线自动面试、评估,精准度高达 98%,效率提升 5 倍以上,改善候选人体验,到面率提升。 3. InterviewAI:在线平台,提供职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,收到评估、建议和得分。
2025-02-01
目前字节有哪些可以运用到安全审核业务的大模型?
字节在安全审核业务中可能运用到的大模型包括: 1. Claude2100k 模型,其上下文上限是 100k Tokens,即 100000 个 token。 2. ChatGPT16k 模型,其上下文上限是 16k Tokens,即 16000 个 token。 3. ChatGPT432k 模型,其上下文上限是 32k Tokens,即 32000 个 token。 大模型的相关知识: 1. 大模型中的数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 2. 以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”指用于表达 token 之间关系的参数多,例如 GPT3 拥有 1750 亿参数。 3. 大模型的架构包括 encoderonly(适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT)、encoderdecoder(同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 google 的 T5)、decoderonly(更擅长自然语言生成任务,典型使用包括故事写作和博客生成,众多 AI 助手基本都来自此架构)。大模型的特点包括预训练数据非常大(往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级数据进行预训练)、参数非常多(如 Open 在 2020 年发布的 GPT3 已达到 170B 的参数)。
2024-12-25
目前字节有哪些可以运用到审核安全业务的ai?
字节在审核安全业务方面可以运用的 AI 包括: 1. OpenAI 的审核(Moderation)Endpoint:可用于检查内容是否符合使用策略,其模型分为 hate(表达、煽动或宣扬基于种族、性别等的仇恨内容)、hate/threatening(仇恨内容且包括对目标群体的暴力或严重伤害)、selfharm(宣扬、鼓励或描绘自残行为)、sexual(旨在引起性兴奋的内容)、sexual/minors(包含未满 18 周岁的个人的色情内容)、violence(宣扬或美化暴力或歌颂他人遭受苦难或羞辱的内容)、violence/graphic(以极端血腥细节描绘死亡、暴力或严重身体伤害的暴力内容)等类别。在监视 OpenAI API 的输入和输出时,可以免费使用审查终结点,但目前不支持监控第三方流量,且对非英语语言的支持有限。 2. 专利审查方面的 AI: 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析,提高了专利检索的准确性和效率。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析,减少了人工工作量,提高了专利审查的效率和准确性。 其他应用: 专利检索与分类:通过自然语言处理(NLP)和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 专利分析和评估:分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 自动化专利申请:帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 专利图像和图表分析:分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
扣子 字节如何创建自己的智能体
以下是在字节的扣子平台创建自己的智能体的步骤: 1. 构思智能体的名字,并为其撰写一段详细的介绍,介绍越详细越好,因为平台会根据介绍智能生成符合主题的图标。 2. 访问扣子官网(https://www.coze.cn/),点击创建 Bot,在对话框中工作空间选择“个人空间”,并为其命名。 3. 可以设置智能体的提示词、使用 AI 创建头像等。 需要注意的是,扣子是字节跳动旗下的 AI 应用开发平台,在这个平台上开发智能体的门槛较低,无论是否有编程基础都可以快速搭建基于 AI 模型的多样化问答 Bot。同时,扣子还提供了丰富的插件、工作流、知识库等功能来增强 Bot 的能力和交互性。
2024-11-23
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
扣子AI在中小学数学教学中可以怎么结合使用
扣子 AI 在中小学数学教学中的结合使用可以参考以下方面: 1. 自适应学习系统:例如使用像 Khan Academy 这样的平台,结合 AI 技术为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用像 Photomath 这样的工具,通过图像识别和数学推理技术为学生提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的应用,借助 AI 技术为学生解答数学问题、提供教学视频和答疑服务,帮助学生理解和掌握数学知识。 4. 交互式学习平台:参与像 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 此外,为小学数学课设计教育游戏时,可以考虑以下几个方面: 1. 游戏机制:选择适合小学生的游戏机制,如跳跃、追逐、搜寻等,增加游戏趣味性和参与度。 2. 游戏元素:选择数学相关的元素,如数字、运算符号、图形等,将它们融入游戏中,使学生通过游戏了解或巩固相应的数学知识。
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
扣子api的调用流程
扣子 API 的调用流程如下: 1. 传递请求的相关部分: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中通常不用于传递参数,因为 GET 方法的 URL 已包含必要参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列段落。在 GET 方法中可传递参数,但常编码为 URL 一部分。 Query:用于定义请求的查询部分,通常以“?”开头,后跟一系列键值对。在 GET 方法中是常用的参数传递方式。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中通常不用于传递参数,而是定义请求头部信息。 2. 配置输出参数: 如果填写无误,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 例如填入汉字“张”,点击自动解析。解析成功会显示成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 3. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,创建扣子的令牌步骤如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,选择过期时间(如永久有效),选择指定团队空间(个人空间或团队空间),勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 让 Coze 智能体机器人连上微信和微信群的配置: 1. 获取机器人 ID:在个人空间中找到要接入微信的机器人,如画小二智能小助手,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为机器人的 Bot ID。 2. API 授权:点击右上角发布,会出现 Bot as API,勾选并确定应用已成功授权 Bot as API。
2025-03-25
扣子工作流与用户界面搭建
以下是关于扣子工作流与用户界面搭建的相关内容: 一、工作流搭建 1. 进入扣子(coze.cn),选中「创建应用」,再选中「创建空白应用」,输入「应用名称」进入项目搭建页面。 2. 新增一个工作流,工作流名称叫做 psy_ai。 3. 该项目的业务逻辑是通过上传儿童的绘画作品分析心理状态,分析过程分为多个步骤实现,工作流的编排流程图为:上传作品>多个多模态大模型识别不同元素>分别提取特种并分析>综合分析结果>给出评估与建议。 4. 工作流从左到右分为三组大模型: 第一组多模态大模型主要作用是分析图片元素:整体特征、房屋特征、树木特征、人物特征。 第二组通用大模型主要是对提取到的信息进行对应内容的总结分析。 第三组通用大模型先汇总结果,然后再分别提取不同(诊断评估与建议)的结果。 5. 所有大模型节点对应的 prompt(提示词):文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc 二、用户界面搭建 1. 选择「桌面网页」类型。 2. 以《小喵星座日历》扣子网页应用为例: 板块 1:输入个人信息和生成图片,包含 2 个选项、1 个按钮、分割图、1 个输入框、1 个按钮。点击生成按钮会触发事件,调用日历生成工作流,生成中时生成按钮禁用,用 loading 按钮展示动态变化。 板块 2:生成星座日历图片,新建一个容器,包含一个文本组件、一个列表组件。 板块 3:查看星座生成记录,新建一个容器,包含一个按钮组件、一个列表组件,点击按钮调用读取生成历史的工作流,列表绑定生成历史工作流的输出结果。 板块 4:查看示例,新建一个容器,包含一个文本组件、4 个图片组件。 三、功能页相关配置 1. {{ImageUpload1.value}}用于获取图片上传组件的第一张图片。 2. {{psy_ai.error}}是工作流的报错信息。 3. 当用户上传图片点击按钮时会进入在家中的状态,右边内容显示容器里有两个组件: 图片组件显示加载中的 gif 图片(默认隐藏),图片来源本地上传加载中 gif 图,尺寸宽度为百分比 100%,高度适应内容,可见性根据{{!psy_ai.loading}}控制,工作流运行中显示。 Markdown 组件显示分析内容,隐藏根据{{psy_ai.loading}},工作流运行完显示。 至此,页面所有的布局和数据交互全部完成。
2025-03-25