RAG 是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型提供额外的、来自外部知识源的信息。它由检索器和生成器组成,检索器从外部知识中找到与问题相关的信息,生成器利用这些信息制作精确和连贯的答案。
LangChain 是一个用于构建高级语言模型应用程序的框架,提供了一系列工具和组件,使开发人员更容易使用大型语言模型创建各种应用程序。
LangChain 和 RAG 的关系是:LangChain 的设计主张集中在模块化组件上,这些组件提供用于使用 LLM 的行为抽象,并为每个抽象提供实现的集合,允许开发人员构造新链或实现现成的链。RAG 是一种结合了检索和生成的技术,能够为 LLM 提供来自外部知识源的附加信息,使 LLM 在应对下游任务时能够生成更精确和上下文相关的答案,并减少 LLM 的幻觉现象。
RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。
LangChain是一个用于构建高级语言模型应用程序的框架,它提供了一系列的工具和组件,使得开发人员能够更容易地使用大型语言模型(LLM)来创建各种应用程序。LangChain的设计主张集中在模块化组件上,这些组件提供用于使用LLM的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。RAG,即检索增强生成(Retrieval-Augmented Generation),是一种结合了检索(检索外部知识库中相关信息)和生成(利用LLM生成文本)的技术。RAG能够为LLM提供来自外部知识源的附加信息,使得LLM在应对下游任务时能够生成更精确和上下文相关的答案,并减少LLM的幻觉现象。LangChain和RAG之间的关系可以概括为:
RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。