Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在医疗健康领域的应用

Answer

AI在医疗健康领域有着广泛的应用前景,主要包括以下几个方面:

  1. 医学影像诊断 利用深度学习等AI技术可以帮助医生更准确、高效地分析CT、MRI、X光片等医学影像,提高疾病的早期发现和诊断准确率。

  2. 药物研发 AI可以通过分析海量数据、建模仿真等手段,加快新药分子的发现和筛选过程,降低药物研发的时间和成本。

  3. 个性化医疗 借助AI分析个人基因、生理数据等,可以实现对疾病风险的预测和个性化治疗方案的制定。

  4. 智能健康监测 可穿戴设备结合AI算法,能够实时监测个人健康数据,并提供健康建议和预警。

  5. 医疗数据处理 AI能够高效处理海量的医疗数据,发现其中的规律和关联,为临床决策提供支持。

  6. 智能医疗助手 AI虚拟助手可以回答患者的常见诊疗问题,提供基础诊疗建议,缓解一线医生的工作压力。

  7. 医疗机器人 AI驱动的手术机器人可以提高手术的精准度,远程医疗机器人有助于解决医疗资源不均衡问题。

总的来说,AI有望从多个层面改善医疗健康领域,提高诊疗效率,优化资源配置,促进精准医疗的发展。但在实际应用中,仍需解决算法透明度、隐私安全等伦理法律问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
在本地环境下要搭建一个医疗数据分析的BI智能体,应该怎么做
抱歉,您提供的内容中没有关于在本地环境下搭建医疗数据分析的 BI 智能体的相关有效信息。一般来说,要在本地环境搭建这样的智能体,您可以考虑以下步骤: 1. 明确需求和目标:确定您希望通过智能体实现的具体医疗数据分析功能和目标。 2. 选择合适的技术和工具:例如,选择适合数据分析的编程语言(如 Python)、数据库管理系统(如 MySQL、SQL Server 等)、数据分析库(如 Pandas、NumPy 等)。 3. 数据收集和预处理:获取相关的医疗数据,并进行数据清洗、转换和归一化等预处理操作,以确保数据的质量和可用性。 4. 模型选择和训练:根据需求选择合适的机器学习或深度学习模型,如分类模型、回归模型等,并使用预处理后的数据进行训练。 5. 智能体的开发和集成:使用所选的技术和工具,开发智能体的逻辑和功能,并将其与数据处理和模型预测部分进行集成。 6. 测试和优化:对搭建好的智能体进行测试,根据测试结果对其进行优化和改进。 7. 部署和维护:将智能体部署到本地环境中,并定期进行维护和更新,以适应新的数据和需求变化。
2025-03-11
AI怎么应用于医疗门诊问题
AI 在医疗门诊中有以下应用: 1. 医学影像分析:用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发进程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每位患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提升手术的精度和安全性。 需要注意的是,湖南省医保局明确禁止使用人工智能生成医疗处方。
2025-03-07
AI医疗
AI 在医疗领域有广泛的应用,包括以下方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了以下最新进展: 1. AI 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作,发现与胶质母细胞瘤相关的新靶基因。 3. AI 帮助抗衰老,筛查出高效的药物候选物。 4. 使用 AI 寻找阿尔兹海默症的治疗方法。 5. AI 帮助早期诊断帕金森。 在蛋白质结构预测和蛋白质合成方面,过去两周有大量突破: 1. AlphaFold 是一种表现出色的 AI 系统,为科学家和药物开发提供巨大帮助。 2. Meta 的蛋白质结构预测 AI 模型 ESMFold 已进行 7 亿次预测。 3. 多伦多大学研究人员开发新的 AI 系统,创造出自然界中不存在的蛋白质。 4. 华盛顿大学的 David Baker 教授团队开发基于 DALLE 的人工智能系统 RF Diffusion,用于生成合适的蛋白质结构。 5. 洛桑联邦理工学院的科学家们开发基于神经网络的新工具 PeSTo,可预测蛋白质相互作用。 6. 萨里大学开发人工智能系统,用于识别个体细胞中的蛋白质模式。 7. 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,目标是将其制成防弹材料。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514
2025-03-05
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
目前最好的用于医疗的AI
目前在医疗领域,有以下一些出色的 AI 应用: 1. 蛋白质结构预测和合成方面: AlphaFold 是由 DeepMind 开发的 AI 系统,在蛋白质结构预测方面准确度超过其他系统,为科学家和药物开发提供巨大帮助。 Meta 的蛋白质结构预测 AI 模型 ESMFold 截至目前已经进行了 7 亿次预测。 多伦多大学研究人员开发了利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质的新 AI 系统。 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 洛桑联邦理工学院的科学家们开发了基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快且通用性强。 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,目标是将其制成防弹材料。 2. 疾病诊断与预测、药物研发以及个性化医疗方面: 麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,它能有效杀灭对现有抗生素产生耐药性的细菌,且不会使细菌产生新的耐药性。研究者通过训练集让 AI 学习分子特点,总结规律,从大量分子中识别出符合要求的分子,之后实验证明其有效性,很快将用于临床。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习,投资创建模型生态系统,例如“专家”AI,通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。不应仅仅依靠大量数据和生成模型解决所有问题,而应通过堆叠模型进行训练,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。
2025-02-10
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
请基于WHO提出的“健康老龄化”这个概念,论述AI和养老产业以及健康老龄化的关系,并举出在WHO、英国以及美国的实例
目前知识库中没有关于“基于 WHO 提出的‘健康老龄化’概念论述 AI 和养老产业以及健康老龄化关系,并列举 WHO、英国以及美国实例”的相关内容。但据现有知识,AI 在养老产业和健康老龄化方面具有重要作用。AI 可以通过智能监测设备实时收集老年人的健康数据,提前预警疾病风险;还能借助智能陪伴机器人为老年人提供心理支持和社交互动。 在 WHO 方面,可能尚未有明确的具体实例,但在理念倡导上可能会强调利用创新技术促进健康老龄化。 英国可能在一些养老机构中应用了 AI 技术来优化服务流程和提高护理质量。 美国或许在医疗保健领域利用 AI 辅助诊断和治疗,以更好地满足老年人的健康需求。但具体的实例还需要进一步查阅权威资料和最新研究。
2025-02-24
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
AI和大健康结合
以下是关于 AI 和大健康结合的一些内容: 在宠物方面: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况。 2. AI 宠物互动玩具:利用 AI 技术开发的智能玩具,增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动。 3. AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 在医疗保健方面: 鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的性质让我们可以将其一部分一部分地拆解,并研究每一个小部分。通过构建系统深入探索专家 AI 的内部工作机制,将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家(无论是人类还是 AI)的教师。 相关案例: 1. 医学:DoctorGPT:不仅是一个 AI 模型,集成了医学专家的知识,能准确回答各种医学问题。 2. 医学:中医应用:将人工智能与中医结合,通过观察口腔、舌苔和抓脉,生成选择题让患者作答,最后 AI 生成药方,目前用于辅助看诊,提高诊疗效率,愿景是未来实现 24 小时独立问诊开药。
2025-02-10
ai和大健康怎么结合
以下是 AI 与大健康结合的一些方式: 1. 医疗保健中的专家 AI :鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习比预期更快地获得知识,并成为下一代专家的教师。AI 的性质允许将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮。 2. AI 宠物助手 :基于自然语言处理和计算机视觉的 AI 宠物助手,可帮助主人更好地照顾宠物,如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 3. AI 宠物互动玩具 :利用 AI 技术开发的智能互动玩具,能增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 4. AI 宠物图像生成 :使用生成式 AI 模型,可根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 5. AI 宠物医疗诊断 :利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 6. AI 宠物行为分析 :基于传感器数据和计算机视觉,利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 7. 医疗保健领域 :人工智能正处于生命科学和医疗保健转变的时期,两个行业都受工程技术推动。在生命科学领域,基因编辑、细胞生物学等方面的进展使科学家能以前所未有的方式操纵生物学,且存在实验与人工智能的强大反馈循环。医疗保健正在利用技术复兴,巨大的成本压力促使创新者寻求改善结果并降低成本的技术,价值导向的付费模式转变为人工智能创造了深层次效用。 总的来说,AI 与大健康的结合充满想象空间,结合 AI 技术和大健康领域需求,可以开发出各种有趣有用的应用。
2025-02-06
deepseek与大健康如何落地
DeepSeek 与大健康的落地可以从以下几个方面考虑: 1. 提示词应用: 可以通过搜索 www.deepseek.com 并点击“开始对话”来使用 DeepSeek。 将装有提示词的代码发给 DeepSeek,认真阅读开场白后正式开始对话。 提示词的设计思路包括将 Agent 封装成 Prompt 并存储在文件中,以实现同时使用联网和深度思考功能,优化输出质量等。 2. 联网版实现: 通过工作流 + DeepSeek R1 大模型,实现联网版的 R1 大模型。 拥有扣子专业版账号,开通 DeepSeek R1 大模型,包括访问特定地址、在火山方舟中进行开通管理等操作,添加在线推理模型。 创建智能体,点击创建完成智能体的创建。 3. 开源策略: DeepSeek 选择走全球开源社区路线,分享模型、研究方法和成果,吸引反馈并迭代优化。开源包括模型权重、数据集、预训练方法和高质量论文等。 需要注意的是,目前提供的内容中未直接提及 DeepSeek 与大健康落地的具体关联,您可以根据以上 DeepSeek 的相关特点和技术,结合大健康领域的需求和场景,进一步探索落地的可能性。
2025-02-06
从事20年的健康管理教练如何从0到1学习AI
以下是为从事 20 年健康管理教练的您提供的从 0 到 1 学习 AI 的建议: 1. 像优秀的医生和药物开发者那样学习:成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,面对面地向最出色的实践者学习。 2. 构建模型生态系统:通过使用彼此堆叠的模型来训练 AI,而不是仅依赖大量数据和生成模型解决所有问题。例如,先训练生物学模型,再训练化学模型,然后添加特定于医疗保健或药物设计的数据点。 3. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 二师兄的经历也有一定参考价值,比如从获取安装包和教学视频迈出第一步,参与社群学习等。 4. 注重基础:预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需经历多年相关学习。对于学习 AI 同样,要打好基础。 5. 保持良好的学习状态:有意愿和动力,能清醒地学进去东西。不必给自己太大压力,能学多少算多少。 6. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-01-30
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13