Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用ai提高阅读和做笔记的效率

Answer

以下是一些利用 AI 提高阅读和做笔记效率的方法:

  1. OpenRead 具有以下核心特性:
    • Q&A 系统:能够快速回答关于论文的问题。
    • Paper Espresso:通过摘要论文生成文献综述,节省研究人员的时间。
    • AI 技术提取:从研究论文中提取图表、公式、表格等重要细节。
    • 高效记笔记:收集和连接笔记,便于引用和参考。
    • 预置模板:提供数千个免费的期刊论文模板,简化发表过程。
  2. 小七姐提出的信息管理工具与方法中,有效的标签系统是知识管理的关键。AI 可以通过分析您的笔记内容和使用习惯,推荐合适的标签和标签结构,这种自动化的提示词功能能够帮助您更高效地管理笔记,提高检索效率。在“AI 时代的知识管理体系构建”中也提到了类似的观点。
Content generated by AI large model, please carefully verify (powered by aily)

References

教育篇-5000+个AI项目详解

Q&A系统:快速回答关于论文的问题。Paper Espresso:通过摘要论文生成文献综述,节省研究人员的时间。AI技术提取:从研究论文中提取图表、公式、表格等重要细节。高效记笔记:收集和连接笔记,便于引用和参考。预置模板:提供数千个免费的期刊论文模板,简化发表过程。

小七姐:信息管理工具与方法

一个有效的标签系统是知识管理的关键,但设计一个既全面又不过度复杂的标签体系并非易事。AI可以通过分析你的笔记内容和使用习惯,推荐合适的标签和标签结构。这种自动化的提示词功能可以帮助你更高效地管理笔记,提高检索效率。

小七姐:AI 时代的知识管理体系构建

一个有效的标签系统是知识管理的关键,但设计一个既全面又不过度复杂的标签体系并非易事。AI可以通过分析你的笔记内容和使用习惯,推荐合适的标签和标签结构。这种自动化的提示词功能可以帮助你更高效地管理笔记,提高检索效率。提示词:

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
雪梅may的100天AI学习笔记
以下是关于雪梅 May 的 100 天 AI 学习笔记的相关内容: 作者介绍: 适合人群:适合纯 AI 小白,可参考日记了解学习路径。 学习模式:输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 学习内容:日记中的学习内容可能因 AI 节奏快而不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间:在半年多时间跨度中,有空时学习,并非每天依次进行。 学习状态:2024 年保持较好状态,不仅学 AI,还看了 33 本书。 费用情况:学习资源免费开源。 第九阶段:学以致用,开源分享 May 花时间复盘过去半年的学习日记,有很棒的发现。 学习路径:迈出第一步→大量学习输入→疯狂模仿→开始自己创造→学的越来越宽越来越杂→积累量变产生质变→开始分享。 特别是学习 coze 的路径:输入→模仿→自发创造,是真实实践得出的规律。 虽费曼学习法主张教会别人是最好学习方式,但开始时自学、输入为主。 现在有分享自信,写学习日记和感受已是分享,后续会有更多分享。 第十一阶段:寻找继续坚持下去的动力 从 24 年 5 月到 25 年 2 月,学完 100 天,仍未找到明确深耕方向。 学习中易遇瓶颈,需找正反馈,开源学习日记获加油是一种方式,还需更好的正反馈继续坚持。
2025-04-08
基于AI技术的阅读、裁剪、分析、笔记的软件有哪些。
以下是一些基于 AI 技术的阅读、裁剪、分析、笔记的软件: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,能精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 笔记相关: Obsidian:可搭配浏览器剪藏插件,一些 AI 插件能实现内置助手功能,如检索笔记、基于笔记生成新内容等。 Cursor:能帮助用模糊问题检索笔记库,基于笔记库进行研究,生成和修改笔记。 使用这些软件时,应结合自身写作风格和需求,选择最合适的辅助工具。需注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-03-28
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
使用ai绘图实现小红书笔记图片批量生成
以下是关于使用 AI 绘图实现小红书笔记图片批量生成的相关知识: Liblibai 简易上手教程: 1. 迭代步数:AI 调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,但生图耗时越长,且效果提升并非线性,过多可能导致效果增长曲线放平并开始震荡。 2. 尺寸:图片生成的尺寸大小。太小 AI 生成内容有限,太大则可能放飞自我。如需高清图,可设置中等尺寸并用高分辨率修复。 3. 生成批次:用本次设置重复生成的批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:指图像与 prompt 的匹配程度。数字增大图像更接近提示,但过高会使图像质量下降。 6. 随机数种子:生成的每张图都有随机数种子,固定种子后可对图片进行“控制变量”操作,如修改提示词、修改 clip 跳过层等。首次生成图时无种子。 7. ADetailer:面部修复插件,可治愈脸部崩坏,为高阶技能。 8. ControlNet:控制图片中特定图像,用于控制人物姿态、生成特定文字、艺术化二维码等,也是高阶技能。 利用 AI 批量生成、模仿和复刻《小林漫画》: 1. 需求分析:主要需求是国内可直接使用且能批量生产,选用扣子搭建工作流,可能需牺牲一定质量的文案和图片效果。 2. 批量生成句子:一次性生成的句子都进行生成图片处理,建议一次不要生成太多,如设置一次生成五句。 3. 句子提取:把生成的句子逐个提取,针对每个句子绘图。 4. 图片生成:根据生成的句子结合特有画风等描述绘图。 5. 图片和句子结合:扣子工作流支持 Python 代码,但环境缺少画图、图片处理所需包,可替换成搞定设计的方式处理图片,会用 PS 脚本效果也不错。 此外,还有一些人员在不同领域涉及 AI 绘图相关工作,如韩君奇从事批量出图和小红书种草工作。
2025-03-18
飞书多维表格生成小红书图文笔记
以下是关于使用飞书多维表格生成小红书图文笔记的相关内容: 一、Coze 应用+多维表格的高速数据分析 1. 动手实践 Coze 应用 创建应用:打开 Coze,可选择 PC 模式,需要几个参数,包括多维表格地址、数据表名、小红书博主首页地址,界面设计为三个输入框和一个按钮。 开发工作流:包括读取博主笔记列表的工作流,工作流实际上只有三步,读取、转换、写入。开始节点设置三个参数,分别代表多维表格地址,表名称,博主首页地址。第二步的节点需要把数据转换为符合多维表格插件接收的数据格式,需添加一个代码节点并复制代码。在插件市场搜索官方的多维表格插件,选择 add_records 并分配配置参数。结束节点配置一个值即可。 Coze 智能体(字段捷径)获取笔记+评论信息 创建智能体:使用单 Agent 对话流模式。 编排对话流:创建新的对话流并与智能体关联,配置两个小红书插件,在获取笔记详情节点和笔记评论节点分别配置 cookie,使用代码节点进行数据处理,注意代码节点输出的配置格式。 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,回到智能体的编排页面同样测试,确保对话流执行成功。 发布:点发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,选发布范围,提交上架信息。 二、办公提效神器:飞书多维表格字段插件 1. 工作紧任务重 第一步,用 AI 插件理解图片:上传参考的海报图片,用 AI 内容生成插件理解。创建表格列时,选择字段捷径,在 AI 中心找到智谱 AI 的内容生成插件,配置提示文本、上传图片所在列和模型。 第二步,生成视频的指令:用飞书自带的插件总结宣语,生成视频的 prompt 指令。自定义总结要求,生成宣传语后再使用飞书自带的自定义 AI 插件生成视频所需的 prompt 指令。
2025-03-13
卡片笔记生产AI工具有哪些
以下是一些卡片笔记生产的 AI 工具及相关介绍: 1. 利用 ChatGPT 辅助完成单词卡片制作: 可以生成对应的单词内容,并整理好放入 Excel 文件中。 利用搞定设计批量产图,步骤包括点击右上角三个点、选择批量套版、按照步骤依次点击、保留要替换的部分等。 2. 以 Trae 为代表的自然语言交互式 AI 编程工具:能让程序小白迈出创造的第一步,只要有清晰需求和创意,就能将想法转化为实际产品。 3. 利用 AI 快速总结群聊消息制作笔记卡片: 方法是文字原文+提示词+AI 大模型+小卡片软件。 先将微信聊天内容批量复制,如多选想要复制的内容转发到群里或文件传输助手,收藏并转存为笔记后全选复制。还可使用能让电脑和手机设备剪切板共享的工具。
2025-03-06
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI 自动安排批量设置工作任务的个人效率 app 推荐
目前在市场上,有一些可以实现 AI 自动安排批量设置工作任务以提升个人效率的应用程序,以下为您推荐几款: 1. Todoist:它具有强大的任务管理功能,支持设置优先级、提醒和分类,能帮助您合理规划工作任务。 2. Microsoft To Do:与微软生态系统紧密集成,方便您在不同设备上同步任务,并进行批量设置。 3. Trello:以看板的形式展示任务,直观清晰,便于批量安排和跟踪工作进度。 您可以根据自己的需求和使用习惯选择适合您的应用程序。
2025-04-07
AI 自动安排批量设置工作任务的效率工具。
以下是关于 AI 自动安排批量设置工作任务的效率工具的相关内容: 对于中小企业利用人工智能(AI)进行转型,在任务自动化方面: 首先要评估和识别日常重复性高的任务,通过分析工作流程、观察和记录员工工作,确定耗时且重复性高的活动,明确通过观察和记录要达成的具体目标,如提高效率、减少错误率等,计划和安排对员工日常工作的观察,与员工交谈了解其看法,分析收集的数据以确定可优化的任务,并制定引入新工具等具体行动计划。 最后引入自动化工具,如 RPA 技术,根据企业需求和预算选择合适工具,在 IT 系统中部署并配置,进行测试和调整优化。 适合工作流化的业务一般具备以下特点: 重复性工作多,业务中的任务或流程高度重复。 业务流程固定,步骤相对固定,且具有标准化的操作流程。 以自媒体工作者为例,常见工作流步骤包括内容策划、创作、编辑、审核、发布、互动和效果分析优化等,通过 AI 标准化这些步骤并利用工具自动执行,可提高效率,让工作者有更多时间和精力专注核心业务。 一般来说,Workflow 是一系列相互连接的步骤,旨在完成特定任务或目标。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流会利用大模型等 AI 技术,被称为 AI Workflows,可分为 Agentic 和非 Agentic 。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,以实现特定任务或目标,AI Agents 被授予权限,利用其核心组件将传统工作流转变为响应式、自适应和自我进化的过程。
2025-04-07
如何设置知识库才可以提高检索效率
以下是一些提高知识库检索效率的方法: 1. 文档分块: 分块是为了后续的检索能返回更精准的答案。 避免把整个使用手册作为一个整体检索,防止返回大量无关信息。 适应模型输入限制,确保能将相关信息输入到模型中,不超出其处理能力。 提升回答质量,让大语言模型更集中地理解和回答特定问题。 优化向量表示,得到更精确的向量,提高检索准确性。 2. 选择合适的工具和平台: 如使用 Coze 时: 可以使用外贸大师产品的帮助文档进行演示。 选择其中一个文档创建知识库,如“购买后新人常见问题汇总·语雀”。 点击创建知识库,从知识库中添加知识单元,使用 Local doucuments 的方式,上传 Markdown 格式文档,注意每个问题使用“”开头。 但要注意文档的分片策略会严重影响查询结果,跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等是基于 RAG 方案自身原理导致的问题。 如使用百炼时: 在百炼控制台的中的非结构化数据页签中点击导入数据,上传相关文档。 根据文档大小,百炼需要一定时间解析,通常占用 1 6 分钟。 进入,创建新的知识库并选择上传的文件,其他参数保持默认,建立索引。 选择向量存储类型时,若希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 完成知识库创建后,返回,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 特别需要注意的是,不同工具和平台可能存在各自的特点和限制,需要根据实际情况进行选择和优化。
2025-03-14
我想学习AI如何使用,可以提高我的工作效率。请给我一个计划
以下是为您制定的学习 AI 以提高工作效率的计划: 首先,了解 AI 的基本概念和应用领域。AI 已经在许多方面带来了重大进展和效率提升,例如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、科学研究等。 其次,认识到 AI 在工作场所的潜力。它可以将我们从单调的任务中解放出来,让我们有更多时间从事专业工作。 然后,学习相关的法律法规。例如《促进创新的人工智能监管方法》,了解如何在合规的前提下利用 AI 创新,平衡风险与机会、利益。 在学习过程中,关注以下方面: 1. 了解大型语言模型等技术的发展,及其为经济和社会带来的转型机会。 2. 明白监管可以通过给予企业解决重要问题的激励,同时应对对公民的伤害风险,从而增加创新。 3. 熟悉国家的 AI 战略和数字监管计划中的原则,以及相应的比例方法。 最后,根据所学知识,在工作中尝试应用 AI 技术,不断总结经验,提高工作效率。
2025-03-14
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
有哪些论文阅读助手相关的预置提示词
以下是一些论文阅读助手相关的预置提示词: 论文内容总结方面:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高梳理效率。例如:阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。 论文内容翻译方面:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 论文内容扩写润色方面:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。比如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。 此外,还有以下相关提示词: Claude2 中文精读方面:零提示生成直接引用,如提示以获取相关引语。文档摘要或文本+直接引语通常能使答案更准确。 小七姐的教程中提到:比如让 AI 帮阅读文档时,可以写如“于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦!”的提示词。还可以选择如“情境:”这样的基础提示词框架入手。
2025-04-08
AI阅读习惯养成APP
以下是为您提供的关于 AI 阅读习惯养成的相关内容: AI 稍后读助手的设计思路: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看,提高可访问性。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成合适的阅读计划。 同在字节生态中的 Coze、飞书、飞书多维表格可以构建完整的 AI 工作流:通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出;由 Coze 调用大模型、插件完成内容整理和推荐;利用飞书多维表格存储和管理稍后读数据,无需开发插件和 APP 即可实现跨平台的稍后读收集与智能阅读计划推荐。 关于 DeepSeek R1 的纯强化学习: DeepSeek R1 引入纯强化学习(RL),不依赖大量人类标注数据,通过自我探索和试错学习。在“冷启动”阶段,通过少量人工精选的思维链数据初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统反馈下(对结果准确率与回答格式进行奖励)自主探索推理策略,不断提升回答准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。如 Alpha Zero 只训练三天就完胜 Alpha Go Lee,Alpha Go 结合监督学习和强化学习,受人类局限,Alpha Zero 纯强化学习,具有创造性风格。大模型 AI 在纯强化学习下展现出超出想象的成长潜力,DeepSeek R1 更注重学习推理底层策略,培养通用推理能力,实现跨领域知识迁移运用和推理解答。
2025-03-28
ai 阅读器
以下是为您整理的关于 AI 阅读器的相关信息: 360AI 浏览器 作为“阅读器”,早期以新闻资讯为主,如今随着专业长文和视频增加,用户浏览消耗时间逐渐增加,浏览提效需求迫切。 功能 1:看长视频,敲黑板划重点。能帮用户观看 B 站的字幕视频,短短几秒总结概要生成脑图,告知重点和高潮剧情,还能对英文字幕进行翻译,通过 AI 助手对话就视频内容进行追问和扩展提问。 功能 2:阅读国内外长论文和著作,自动翻译自动提炼,3 分钟获取要点。支持 360k 长文本阅读,以《三体》为例,可呈现完整故事框架并生成思维导图。 官网地址:ai.se.360.cn 智谱●智谱清流 专为企业 AI 应用落地打造的 AI 智能体开发平台,提供 Agents、Workflow、知识管理、批量效果调优等能力,支持 API、SDK、URL 三种集成方式。 网址:https://bigmodel.cn/agent 会读 ReadFlow X 知我 AI 会读 ReadFlow 是一款 AI 阅读工具,核心功能是通过微信对话发送文章链接,直接生成摘要,后续增加了小报、归档、标签等新功能。会读用户已迁移至同类型产品知我 AI。 知我 AI 网址:https://knowme.xiaoduoai.com ReadAgent 由 Google 开发的阅读代理,模仿人类阅读方式处理长文本,采用忘记具体信息但保留要点的策略提高理解效率。 网址:https://readagent.github.io
2025-03-24
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24