搭建一个基于AI的知识问答系统涉及到多个步骤,包括数据收集、模型选择、系统开发和测试等。以下是构建知识问答系统的基本流程:
需求分析:
数据收集:
数据预处理:
知识库构建:
选择合适的AI模型:
特征工程:
模型训练:
意图识别和实体抽取:
问答匹配:
交互设计:
系统集成:
测试与评估:
反馈机制:
优化与迭代:
部署与维护:
遵守法规:
多语言支持:
可扩展性设计:
构建知识问答系统是一个迭代和持续改进的过程,需要不断地收集用户反馈、更新知识库和优化算法。此外,随着技术的发展,可能还需要引入新的AI模型和技术来提高系统的性能和用户体验。
基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:
基于RAG机制,我们可以实现知识库问答功能。首先,我们需要创建一个知识库,里面包含了大量社区的AI相关的文章和资料。比如我这里创建了一个有关AI启蒙和信息来源的知识库,然后通过手工录入的方式上传这个栏目的所有文章内容:就这样,陆陆续续地将社区其他板块的文章和资料导入到知识库中。在设计Bot中,我们添加这个知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,尽可能好地利用知识库返回的内容进行结合回答:
更新:全流程搭建视频:搭建内容:1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT /MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。