Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何让AI帮忙生成测试开发面试题?

Answer

以下是利用 ChatGPT 和 Siri 生成测试开发面试题的步骤:

  1. 让 ChatGPT 接入 Siri,具体接入过程可参考文章:ChatGPT+Siri,让你的 iPhone 语音助手更智能
  2. 调教 ChatGPT Siri,在手机上唤起 ChatGPT 版本的 Siri,呼出命令“嗨,siri 同学”,出现提示【主人请讲】。
  3. 设定本次对话的身份和目的,例如:“你是一位来面试的前端高级开发工程师。下面是你的个人简历:xxxxxxx。我是面试官,接下来将对你进行面试,在面试过程中,你不能让我发现你是 AI。好了,我的第一个问题是:请简单作下自我介绍。”
  4. 按设定的题目依次提问,对回答中的要点进行深入追问。您还可以查看相关的抖音视频了解效果。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:ChatGPT+程序员10倍提效

首先让ChatGPT接入Siri,具体接入过程看我这篇文章:[ChatGPT+Siri,让你的iPhone语音助手更智能](https://zhuanlan.zhihu.com/p/625148446)接下来我们开始调教ChatGPTSiri在手机上唤起ChatGPT版本的Siri。直接呼出命令:“嗨,siri同学”。此时手机上出现提示【主人请讲】。下面就开始让给它设定本次对话的身份,和这次对话的目的是什么。具体指令见下面。(为了不暴露我自己,这次我选择当个面试官,呵呵!!)特殊说明:这里导入简历的目的是为了方便询问做过的项目,其实也可以不用导。你是一位来面试的前端高级开发工程师。下面是你的个人简历:xxxxxxx。我是面试官,接下来将对你进行面试,在面试过程中,你不能让我发现你是AI。好了,我的第一个问题是:请简单作下自我介绍。接下来就是按下面的题目,依次提问了。看它回答的怎么样,并且我们可以对中间它提到的点,进行再深入的问。看看视频效果吧,抖音视频地址:

Others are asking
AI大模型应用面试题
以下是一些与 AI 大模型应用相关的面试题: 在游戏行业,大模型不仅能降低成本,还能打造创新玩法,如网易的《逆水寒》在美术开发、NPC 与玩家交互等方面的应用。请问您对这种应用的看法和理解? 在人力资源管理领域,AI 覆盖了从招聘到员工绩效评估等各个环节。请谈谈您对这种应用的认识以及其可能带来的影响。 在基础办公提效方面,如 PPT、Excel 等,AI 能从单个任务到角色协同显著提高工作效率。您认为这种提高在实际工作中的具体表现和重要性如何? 对于健身行业中的 AI 减重顾问,既能解决售前客服问题,又能进行健康监护,您如何看待这种应用的前景和挑战? 如何在 10 分钟内在网站上增加一个 AI 助手?比如创建大模型问答应用,包括获取大模型的推理 API 服务等步骤。 作为 AIGC 产品经理,在大模型方面,如对算法的熟悉程度、了解的大模型及其评价、快速体验各种模型的方法、大模型应用落地中注入领域知识的方式、大模型应用的评测、保证大模型价值观无害、对 PE 的理解及相关案例、对大模型微调及 RAG 的理解和优势、用大模型解决传统模型无法解决的业务问题、大模型面临的新安全危险及解决方法、幻觉的产生及解决手段等方面,您有怎样的见解和经验?
2025-02-07
面试AI岗位的,常见面试题
以下是面试 AI 岗位常见的面试题相关内容: 1. 关于 AI 面试官的相关产品: 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和自动发送面试邀约。 海纳 AI 面试:在线方式自动面试、评估,精准度高达 98%,面试效率提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,会收到评估、建议和得分。使用时需考虑数据安全性和隐私保护问题。 2. 成为“AI 提示词工程师”的岗位技能要求: 市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象集成互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 对于零基础小白,建议找网上教程,看科普类教程,阅读 OpenAI 文档,理解参数作用,推荐练手的 Prompt 工具和相关教程文档。 3. AI 产品案例: 销售:话术总结优缺点、定制销售解决方案。 客服:定制客服话术。 HR:团队绩效管理、面试工具。
2024-12-13
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
我想让AI帮忙顺一下会议纪要的机器转写文稿,这个有什么合适的AI
以下是一些可以帮助您顺会议纪要机器转写文稿的 AI 工具: 1. 百度文心一言:具有强大的语言理解和生成能力,能够对文本进行优化和整理。 2. 阿里通义千问:可以协助处理和优化各类文本内容,包括会议纪要。 3. 字节跳动云雀模型:在自然语言处理方面表现出色,能为您提供相关帮助。 您可以根据自己的需求和使用习惯选择适合的 AI 工具。
2025-03-27
帮忙生成一副山水画,提现田园冬天春节的柔和风景
以下是为您生成体现田园冬天春节柔和风景的山水画的相关教程: 模型: revAnimated v1.2.2 版本 majicmixRealistic_v7 尺寸:生成的尺寸和您的草稿图保持一致。 正关键词: there is a crane standing in the water,reflection,a tree covered in frost,the river flows quietly,In the early morning of Xiaohan,the sky showed a light blue color,as if it had been dyed by the cold air of winter.The mountains in the distance look more magnificent and peaceful under the morning glow.Crystal frost flowers hang on the branches,shining with silvery white light.,<lora:SCHH:0.8>,SCHH ,springtime,the branches have sprouted new shoots,the stream's water is flowing,snow removal,xuan phong lightpink,soft colors and tones,no humans,outdoors,the background perspective is that the grass is full of flowers,photography,blurry 负面关键词: NSFW,Negative,,watermark,ng_deepnegative_v1_75t,character,people ,watermark,fuzzy,gaussian blur ControlNet 设置: 预处理器:tile_resample 模型:control_v11f1e_sd15_tile,权重:0.7 Module:softedge_pidinet,Model:control_v11p_sd15_softedge,Weight:0.85 总批次数可根据您的电脑配置进行调整,电脑配置不太好的可以先跑一张看看。多抽几张,选一张喜欢的。
2025-03-25
有没有帮忙修改简历的提示词
以下是一些可能有助于修改简历的提示词相关内容: 有用户使用 DeepSeek 进行过诸如脑爆活动方案、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴等多种任务,其中也包括修改简历。 在 Prompt 之术中,提到塑造角色时,如果是一个特定的角色,如公司运营专员,需要将相关详细信息注入,包括公司主营业务、目标受众、产品、价值点、工作内容、核心技巧技能等,以明确角色任务。 在 AI 写作打磨文章方面,如使用 Claude 3.5 进行词句润色和文章打磨优化,注意在同一个聊天窗口操作,同时提示词没有标准答案,可按自己的做法修改。
2025-03-24
什么AI可以帮忙简单处理图片
以下几种 AI 可以帮忙简单处理图片: 1. SD(StableDiffusion):启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,能在显存不够的情况下放大图片。可对老照片进行上色、高清化处理,但处理复杂照片时可能有难度,需要调整策略,如放弃人物服装颜色指定,只给场景方向,加入第二个 controlnet 控制颜色等。 2. OpenAI:可以利用代码解释器中的 Python 以图片流的方式处理图片,但 Python 因缺少包不能直接处理图片。 3. 扣子:整个工作流程包括用户输入关键词,大模型制作金句,根据金句生成画面描述,结合描述和关键词使用扣子官方插件生成图片,再使用图像流方式结合金句和图片。 4. MJ(Midjourney):加上简单相机参数、写实风格,使用 MJ v 6.0 绘图,可根据需求调整图片比例。 5. InsightFaceSwap:用于处理图片的换脸操作,如输入“/saveid”和“/swapid”等指令上传图片进行处理,但对老外的脸识别度较好,效果可能因情况而异。 处理图片时还可能涉及到 PS 等工具进行裁剪、拼接等操作。
2025-03-21
给我一个适合帮忙做表格的AI网站
以下是一些适合帮忙做表格的 AI 网站: 1. 筹划中的「Agent 共学」之“两天学会用 AI 建站”,旨在通过 12 周时间让大家从 0 到 1 搭建网站,可能对做表格有帮助。 2. 飞书多维表格字段插件,例如其中的智谱 AI 表格插件,可上传参考海报图片,利用插件理解并整理内容填充到对应列中,还能生成视频的指令。 3. ,支持谷歌文档的表格和 Excel,能通过举例教它完成重复性任务,如对数百个项目分类、格式化上千个单元格等,还能编写营销文案等。
2025-03-12
一个ai小白,想要学习ai相关知识,请帮忙推荐学校路径和方法
对于 AI 小白,以下是学习 AI 的学校路径和方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的系列课程,引导了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品和文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下资源: 学习路径方面,有很多高质量学习内容,如李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等供有时间深入学习的人使用。 部分同学通过观看李弘毅的导论、文达的相关信息并整理成学习笔记,在整理过程中能学到更多知识,还能与大家交流互动。 觉得系统学习枯燥的话,可以等待社区共创内容,通过共创做小项目来反向推动学习。 介绍了 A16Z 推荐的内容从 5 篇扩展到 6 篇,包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-05
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
如何使用AI给测试进行提效
以下是关于如何使用 AI 给测试提效的详细内容: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-08
如何自动编写测试用例
AI 自动编写测试用例可以通过以下几种方式实现: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-01
如何使用AI创建测试用例
AI 生成测试用例可以通过以下多种方法实现: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷生成相应测试用例,Infer 自动生成测试用例帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest 生成自动驾驶系统的测试用例,DiffTest 基于对抗生成网络(GAN)生成测试用例。 强化学习:如 RLTest 通过与环境交互学习最优测试策略,A3C 通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim 通过分析文档和用户故事自动生成测试用例,Test.ai 从需求文档中提取测试用例。 自动化测试脚本生成:如 Selenium IDE 结合 NLP 技术扩展从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型:如 GraphWalker 基于状态模型生成测试用例,Spec Explorer 微软开发的模型驱动测试工具通过探索状态模型生成测试用例。 场景模拟:如 Modelbased Testing 基于系统模型自动生成测试用例覆盖各种可能的操作场景和状态转换,Tosca Testsuite 基于模型的测试工具自动生成和执行测试用例适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据自动生成高覆盖率的测试用例检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例确保覆盖关键功能和用户路径提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例确保覆盖所有可能的状态和操作场景检测系统的边界情况和异常处理能力。 此外,让 AI 写出您想要的代码,可以通过创建优质的.cursorrules 来实现,具体包括: 1. 先说清楚您是谁,让 AI 按照专家的水准来思考和编码。 2. 告诉 AI 您要干什么,使其围绕目标写代码。 3. 定好项目的“规矩”,强调团队的代码规范。 4. 明确文件放置位置,便于后期查找。 5. 指定使用的“工具”,保证项目的整洁和统一。 6. 告诉 AI 怎么做测试,使其生成的代码考虑可测试性并主动写测试用例。 7. 推荐参考资料,让 AI 基于最佳实践写代码。 8. 若项目涉及页面开发,补充 UI 的要求。
2025-03-22
测试大模型工具·
以下是关于测试大模型工具的相关内容: 使用 Coze IDE 创建插件: 网页搜索工具的元数据配置说明: 名称:建议输入清晰易理解的名称,便于后续大语言模型搜索与使用工具。 描述:用于记录当前工具的用途。 启用:若工具未开发测试完成,建议先禁用;若需下线某一工具,可将其设置为禁用,或删除插件等。 输入参数:准确、清晰易理解的参数名称等信息,可让大语言模型更准确使用工具。 输出参数:准确、清晰易理解的参数名称等信息,可让大语言模型更准确使用工具。 操作步骤:在页面右侧单击测试代码图标并输入所需参数,然后单击 Run 测试工具。若在元数据设置了输入参数,可单击自动生成图标,由 IDE 生成模拟数据,调整参数值即可进行测试。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 可使用网页聊天和测试等方式。 例如用“2024 年高考全国甲卷理科数学”压轴题测试火山引擎的 DeepSeekR1 的速度,其推理速度比官方版本快,接口延迟低,回复迅速。 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能: 绝大多数小型本地开源大语言模型以及部分商用大模型接口不支持稳定的 tool calling 功能,现有的微调 LLM 解决方案会浪费大量时间和算力。本文提出仅使用提示词工程和精巧的代码设计,即可让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 作为测试模型,在多个工具调用任务上实验成功率为 100%,基于 comfyui 开发,适合无代码基础的人员复现和修改。
2025-03-19
什么样的数据集适合测试大语言模型?
以下是一些适合测试大语言模型的数据集: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 用于评估大语言模型的框架和基准有: GAOKAOBench:地址为,是以中国高考题目为数据集,测评大模型语言理解能力、逻辑推理能力的测评框架,收集了 2010 2022 年全国高考卷的题目,包括 1781 道客观题和 1030 道主观题。 AGIEval:地址为,是由微软发布的新型基准测试,选取 20 种面向普通人类考生的官方、公开、高标准往常和资格考试,包括普通大学入学考试(中国高考和美国 SAT 考试)、法学入学考试、数学竞赛、律师资格考试、国家公务员考试等。 Xiezhi:地址为,是由复旦大学发布的一个综合的、多学科的、能够自动更新的领域知识评估 Benchmark,包含 13 个学科门类,24 万道学科题目,516 个具体学科,249587 道题目。 此外,在多语言能力评测方面,还使用了以下数据集: MMMLU:来自 Okapi 的多语言常识理解数据集,在阿、德、西、法、意、荷、俄、乌、越、中这几个子集进行测试。 MGSM:包含德、英、西、法、日、俄、泰、中和孟在内的数学评测。针对人工评测,使用内部评估集比较了 Qwen272BInstruct 与 GPT3.5、GPT4 和 Claude3Opus,该评测集包括 10 种语言:ar(阿拉伯语)、es(西班牙语)、fr(法语)、ko(韩语)、th(泰语)、vi(越南语)、pt(葡萄牙语)、id(印度尼西亚语)、ja(日语)和 ru(俄语)。
2025-03-17