Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是端到端,在智驾中体现在什么地方

Answer

端到端是指在处理问题或完成任务时,直接将输入数据映射到输出结果,中间不进行明显的分段或模块划分,实现从起点到终点的一体化处理。

在智驾中,端到端的体现主要有以下方面:

  • 对于端到端训练的模型,类似 RFM-1 的路径,直接将多模态输入(如传感器数据、图像等)映射到输出动作(如车辆的转向、加速、减速等)。
  • 在具身智能中,存在大脑与小脑统一在一个大模型之中的端到端具身大模型解决方案。但在实际应用中,对于诸如力矩控制、电流控制等具体环节,对于做到哪一步才算端到端存在争议。

总之,端到端在智驾中的应用仍在不断探索和发展中。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
未来智驾会怎么发展
未来智驾的发展具有以下几个方面的趋势: 1. 技术不断进步:随着多模态理解能力的提升,支持场景会越来越丰富,操作精准度也会提高,用户体验会更加自然。 2. 创新的解决方案:如 AutoGLM 借助 RPA 的思路,通过模拟人类操作来实现跨应用的控制,为智驾的发展提供了新的思路。 3. 场景的深耕细作:选择高频场景进行深入研究和优化,提升产品的价值和实用性。 4. 对生活方式的改变:可能会像第一款智能手机一样,改变人们与车辆交互的方式。 5. 面临的挑战与解决:在发展过程中,可能会遇到诸如语音识别偏差、复杂界面操作稳定性等问题,但这些可以通过技术迭代来解决。 6. 智能体的应用:未来的完全自主智能体可能会拥有更多构建块,为智驾提供更强大的控制和决策能力。 7. 带来广泛影响:人工智能将随着规模而变得更好,对全球人民的生活产生有意义的改善,包括在智驾领域。
2024-12-03
我的英文水平是CET4,想要在一年内达到雅思7分。请以一位专业的英文老师角度给与建议。请将建议以简洁的表达以及每日计划的形式体现出来
对于您想要在一年内从 CET4 水平提升到雅思 7 分的目标,以下是一些简洁的建议和每日计划: 建议: 1. 扩充词汇量:雅思对词汇的要求较高,建议每天背诵一定量的雅思核心词汇。 2. 提升听力水平:多听雅思真题听力,尝试精听和泛听结合。 3. 加强阅读训练:每天进行雅思阅读练习,提高阅读速度和理解能力。 4. 注重写作练习:定期写作并请专业老师批改,学习优秀范文的结构和思路。 5. 口语练习:找语伴或参加英语角,多说多练,纠正发音和语法错误。 每日计划: 早上: 背诵 30 个雅思词汇。 听 30 分钟雅思听力真题,并做笔记。 中午: 利用午休时间阅读一篇雅思阅读文章。 晚上: 写一篇雅思作文,并对照范文进行修改。 进行 30 分钟的口语练习,可以通过模仿、对话等方式。 周末: 做一套完整的雅思模拟试题,包括听力、阅读、写作和口语。 总结本周的学习情况,找出薄弱环节,加强练习。 需要注意的是,学习计划要根据个人实际情况进行调整,保持坚持和耐心,祝您成功!
2024-12-17
我需要一份提示词给sd使用,希望生成的内容达到要求展现自然美景,如山脉、海洋、森林等,用视 觉作品捕捉大自然的壮丽与宁静,体现人与自然的和谐共处
以下是为您提供的用于 Stable Diffusion 生成自然美景(如山脉、海洋、森林等),体现人与自然和谐共处的提示词示例及相关技巧: 提示词示例: masterpiece, best quality, ultradetailed, illustration, closeup, straight on, face focus, natural beauty, mountains, ocean, forest, serenity, harmony between human and nature, sunlight, clear sky, greenery, wildflowers, people enjoying the scenery 提示词技巧: 1. 一般而言,概念性的、大范围的、风格化的关键词写在前面,如“masterpiece”“best quality”“ultradetailed”“illustration”。 2. 叙述画面主题内容的关键词其次,如“natural beauty”“mountains”“ocean”“forest”。 3. 描述细节的关键词放在后面,如“sunlight”“clear sky”“greenery”“wildflowers”。 4. 可以使用括号人工修改提示词的权重,例如“将权重减少为原先的 25%”。 5. 关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 在生成图像时,您还需要注意以下设置: 1. 选择合适的模型,例如 anythingV5 这个专门用于二次元绘画的大模型。 2. 采样迭代步数通常控制在 20 40 之间,步数越高绘画越清晰,但绘画速度也会越慢。 3. 选择常用的采样方法,如 Euler a、DPM++2S a Karras、DPM++2M Karras、DPM++ SDE Karras、DDIM。 4. 将比例设置为 800:400,注意尺寸并非越大越好,模型的练图基本按照 512x512 的框架去画,高宽比尽量在这个数值附近。如果想要高清的图,可以同时点选高清修复来放大图像倍率。 您还可以使用自动写提示词脚本 One Button Prompt 来获取更多灵感,在主菜单中设定主题为“风景”,正向提示词给一个“房子”,然后点击“生成一些提示词”,对生成的提示词进行修改调整。
2024-12-02
中美AI技术差距主要体现在哪些地方?以通信方面作为分析角度
中美在 AI 技术的通信方面存在以下差距: 1. 技术专长:包括对 AI 技术如何用于提供产品和服务,以及技术标准的开发、使用和适用性等方面的理解。 2. 跨监管制度的交互理解:在不同监管制度下 AI 使用案例如何相互作用方面的专业知识存在差异。 3. 市场情报:对于 AI 技术如何颠覆现有商业模式,包括潜在机会和风险对监管目标的影响,了解程度不同。 4. 组织能力:在有效适应 AI 应用的出现、在组织内吸收和分享知识、与提供保证技术的组织合作并制定技术标准,以及跨监管机构共享知识和合作监管等方面的能力有所不同。 需要注意的是,目前提供的内容中未明确提及中国在这些方面的具体情况,以上是基于所给资料中关于一般监管机构在 AI 相关方面能力差距的分析。
2024-10-20
chatbi落地方案
以下是关于 ChatGPT 落地方案的相关内容: 产品经理如何用 ChatGPT: 背景前提:非专业 BI 工程师,依靠 GPT 提示和查询资料解决不擅长领域问题及学习成长。使用免费的 ChatGPT3.5 版本,因充值问题未解决,且账号登录出现问题无法截图还原完整对话过程。 使用过程: 先整理与 GPT 交互的基本思路及步骤,包括旧代码输入、需求及现状问题输入、调试优化、结果输出验证。 旧代码输入时,1900 行代码直接粘贴报错,采取分次输入再联合的方式,让 GPT 理解旧代码实现效果及熟悉查询表和字段,方便后续生成优化代码直接在数据库运行。原 SQL 主要逻辑是统计近 30 天内每天的业务数据日报,按天和地区分组汇总,需查询多张表几百万条数据。GPT 理解基本正确,并主动提出优化建议。 LLM 落地思考: 对大模型的任务理解、编程能力、输出遵循有较高要求,需要 LLM 前处理与后处理工程兜底,因企业流程自动化出错影响面广。该方向能帮助企业完成数字化转型并升级至业务自动化,多为定制化服务,业务爆发期可能在几年后经济回暖时,目前需求方可能优先是国企与金融等数字化成熟且有国家 AI+任务驱动的地方。 采用 RAG 方案进行知识应用的工程框架,包括 AI 搜索、智能客服、流水线问题定位等场景,通过给予大模型已有行业知识解决问题,但前处理过程对方案效果影响较大。 ToC 业务方面,当前爆款产品如 ChatGPT、Midjourney 等,暂未出现像微信这样的大杀器 C 端产品,未来 C 端产品形态难以确定。
2025-03-22
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
我是一名短视频创作者,我自身有自己写的现代诗歌,但是因为自己的声音不好,所以想自己制作一个利用网络音频和AI视频来展示我创作的诗歌的coze工作流,但是我对于ai的提示词有很多不明白的地方,您能够给我帮助吗
以下是为您提供的关于利用网络音频和 AI 视频展示诗歌的 Coze 工作流的相关指导: 1. 整体结构和参数配置: 工作流通常包括开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块和输出结果模块等。 每个模块都有其特定的参数配置,例如在开始模块中选择源语言和目标语言等。 2. 标题大模型参数配置: 您需要作为小红书爆款写作专家,根据输入内容产出 3 个标题,采用二极管标题法创作,并善于使用吸引人的特点和爆款关键词,同时要符合小红书平台的标题特性和创作规则。 3. 内容大模型参数配置: 作为小红书爆款写作专家,根据输入内容产出 1 篇正文,每段话包含适当的 emoji 表情,文末有合适的 tag 标签。写作时要注意风格、开篇方法、文本结构、互动引导方法、一些小技巧、爆炸词等,文章尽量口语化、简短,在 200 字左右。 4. 图片 Prompt 大模型参数配置: 作为绘图 Prompt 大师,将输入内容转成 AI 更容易理解的绘画 Prompt。 5. 工作流创建步骤: 点击工作流后面的“+”添加工作流,然后创建工作流。 给工作流起名字和描述,名字只能用字母、数字和下划线,描述要清晰。 初始化工作流后,会生成开始模块和结束模块,左边有各种插件和搭建 Agent 的工具,可根据需要添加和使用。 希望以上内容对您有所帮助,如果您在具体操作过程中还有其他疑问,请随时向我咨询。
2025-03-12
大模型企业落地方案有哪些
大模型企业落地方案主要包括以下几个方面: 1. 提高内容可信: 做具备通用能力的大模型,通过商业交付应用、反馈和评测来解决内容可信问题。 不断优化数据以解决实际应用问题,如自我学习能力等。 走向垂直化,结合场景用一个模型和框架提高内容精准度。 2. 解决算力成本高、训练重复和资源紧缺的问题: 以 GPT3 模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过 1200 万美金,且全行业训练卡持续涨价。 目前仍无人能用商业化的国产芯片做大模型训练。 3. 降低大模型价格或使用垂直领域模型落地。 4. 以百度智能云为例: 在 IaaS 层,百舸 AI 异构计算平台解决算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,提升算力管理能力和模型训练效率,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大算力支撑。 在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面工具链,支持定制化模型开发,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用数据反馈到模型中形成良性循环,持续优化模型性能。 在 SaaS 层,提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,大模型在实际应用中存在一些问题,如知识的局限性、幻觉问题和数据安全性问题,而 RAG 是解决上述问题的一套有效方案,它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可以和微调结合使用,两者并不冲突。
2025-03-12
AI 项目企业落地方向和案例。
以下是关于 AI 项目企业落地方向和案例的相关内容: AI 企业落地应用方面,有文章能带你快速搞懂本轮 AI 大模型革命的核心知识信息,从历史到今天,从原理到应用,从产业到趋势,以通俗易懂但不失专业严谨的方式带你走入 AI 的世界。 Anthropic 在 AI Engineer Summit 2025 上分享了企业应用 AI 的最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。案例方面,Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 此外,还有用飞书+DeepSeek R1 搭建自动化 AI 工作流的相关内容。流程包括 URL 内容抓取➝DeepSeek R1 翻译➝自动改写➝生成文章。飞书提供快速启动模板,支持翻译、OCR 等任务。工作流链接: 。 宝玉 Q&A 中提到处理大规模代码,可使用 XML 包裹,超大代码可上传 GitHub 供 AI 分析,AI 还可生成代码并搜索相关库。查看内容: 。ChatGPT 免费用户可使用 GPT4o mini 语音版,免费用户可体验自然对话节奏,Plus/Pro 用户享特权。
2025-02-27