Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通过ollama和通义千问大模型,如果要实现一个智能机器人,支持模型微调,扩展知识库,问答记忆功能的实现步骤

Answer

要通过 Ollama 和通义千问大模型实现一个支持模型微调、扩展知识库和问答记忆功能的智能机器人,可参考以下步骤:

  1. 安装和启动 Ollama 服务:
    • 在 Mac 上启动 Ollama 应用程序,在 Linux 上通过 ollama serve 启动。
    • 通过 ollama list 确认服务是否已启动。
  2. 下载模型:
    • 可下载如 Gemma(7B 模型)、Mistral(7B 模型)、Mixtral(8*7B 的 MoE 模型)、Qwen(通义千问,7B 模型)等。
  3. 了解 Ollama 的特点和优势:
    • 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。
    • 易于在 macOS、Windows 和 Linux 系统使用,支持 CPU 和 GPU。
    • 提供模型库,可通过 https://ollama.com/library 查找和下载不同模型,满足不同需求和硬件条件。
    • 支持自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。
    • 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。
    • 社区贡献丰富,有多种集成插件和界面。
  4. 安装相关模型:访问 https://ollama.com/download/ 进行下载安装。
  5. 选择文本向量模型:使用文本向量模型 bge-m3,可从 https://huggingface.co/BAAI/bge-m3 下载。
  6. 利用 FAISS 创建向量存储:从 hf 下载好模型放置在指定路径,通过相关函数创建高效的向量存储。
  7. 实现 RAG:基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题。
  8. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。获取完整代码可关注公众号发送 fin 获取 github 仓库代码链接。
  9. 进行问答测试:对同样的问题和上下文,基于 Qwen-7b、Gemma、Mistral、Mixtral 和 GPT-4 分别进行多次测试。
Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:Gemma:Gemma是由Google推出的轻量级模型,Google表示,“Gemma 2B和7B与其他开放式模型相比,在其规模上实现了同类最佳的性能。”本次开发,下载的是7B模型。Mistral:Mistral是由欧洲法国Mistral AI团队推出的大模型,该模型采用了分组查询注意力(GQA)以实现更快的推断速度。本次开发,下载的是7B模型。Mixtral:Mixtral也是由Mistral AI团队推出的大模型,但Mixtral是一个8*7B的MoE模型,在大多数基准测试中都优于Llama 2 70B和GPT-3.5。Qwen:Qwen(通义千问)是由阿里巴巴推出的大模型,本次开发,下载的是7B模型。万物皆可RSS巧妇难为无米之炊。不管是获取日常新闻,还是获取A股行情,都需要有稳定靠谱的数据源。大家可能第一时间会想到爬虫,但自己去搭建和维护这样一个爬虫系统还是比较麻烦的。有没有其他更好的方式呢?这就需要用到「上古神器」 RSS了!

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现RAG。|创建网页UI最后,通过gradio创建网页UI,并进行评测。生成的Web UI如下:需要上述完整代码的读者,关注本公众号,然后发送fin,即可获取github仓库代码链接。问答测试对于同样的问题和上下文,我基于Qwen-7b、Gemma、Mistral、Mixtral和GPT-4分别进行了多次测试。下面是一些case:qwengemmamistralmixtralgpt4

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
本地用Ollama部署模型,使用哪个ChatBox客户端好?
目前在本地使用 Ollama 部署模型时,没有特别突出或被广泛推荐的特定 ChatBox 客户端。不同的客户端可能在功能、界面和兼容性方面存在差异,您可以根据自己的需求和使用习惯进行选择和尝试。常见的一些客户端包括但不限于 Web 端的简单界面工具,或者一些具有特定功能扩展的桌面应用程序。但具体哪个最适合您,还需要您亲自测试和评估。
2025-03-27
ollama框架有哪些推荐
Ollama 是一个开源的框架,具有以下特点和功能: 1. 旨在简化在本地运行大型语言模型(LLM)的过程,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者或非技术人员使用。 2. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 3. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装 Ollama 可通过官方下载地址 https://ollama.com/download 进行。安装完成后,可通过访问相关链接判断是否安装成功,在命令行中运行相应命令即可使用,如运行本地大模型的命令。还可通过 ollama list 确认模型下载情况。 此外,在 termux 软件中进行相关操作时,需执行如 aptget update、安装 curl 命令、安装 ollama 命令等。启动模型时,以 phi3 模型为例,在 termux 软件中执行命令 ollama run phi3 并等待下载完成。当然,Ollama 还有很多其他模型,如有需要可在 ollama 官网自行查看命令与下载。
2025-03-14
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
请给我找一个安装ollama-deep-researcher的完整教程,用于windows上。
很抱歉,目前没有关于在 Windows 上安装 ollamadeepresearcher 的完整教程。建议您通过以下途径获取相关信息: 1. 官方网站:访问 ollamadeepresearcher 的官方网站,查找针对 Windows 系统的安装指南。 2. 相关技术论坛:在专业的技术论坛上搜索相关主题,可能会有其他用户分享的安装经验和教程。 3. 视频平台:部分视频平台上可能有关于此软件在 Windows 上安装的演示视频。
2025-03-06
如何在电脑上用chatbox框架,使用ollama搭建deepseek模型
在电脑上使用 Chat Box 框架,通过 Ollama 搭建 DeepSeek 模型的步骤如下: 1. 阿里云百炼平台: 百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 百炼平台无需部署,可直接使用 DeepSeek R1 模型。 DeepSeek R1 模型的价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 使用 DeepSeek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态可以识别更多输入信息,如读文件、图片等,而 DeepSeek R1 本身不是多模态模型。 通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 DeepSeek R1,并获取 API key。 API key 可删除旧的并重新创建,方便本地软件连接。 2. Docker + RAGFlow + Ollama 搭建: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,模型取决于运行的模型。 配置基础 URL。 导入一个 embedding 模型,用于文本向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析好之后,进入检索测试。 测试没问题,可进入聊天界面,助理设置可自行设置。 对于开源模型,如 DeepSeek、Llama 等,可以使用以下方式: 1. Inference Provider:使用 Together AI 等推理服务提供商,在线体验和调用各种开源模型。 2. LM Studio:使用 LM Studio 等本地应用程序,在个人电脑上运行和部署较小的开源模型。
2025-03-03
ollama是什么,使用场景有什么
Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。 它具有以下特点和优势: 1. 支持多种大型语言模型:包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,能让用户轻松在本地环境中启动和运行大模型。 3. 模型库:提供丰富的模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,通过 https://ollama.com/library 查找。 4. 自定义模型:用户能通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 总的来说,Ollama 是一个高效、功能齐全的大模型服务工具,不仅适用于自然语言处理研究和产品开发,也适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户。 其使用场景包括但不限于: 1. 自然语言处理研究。 2. 产品开发。 安装方法:官方下载地址为 https://ollama.com/download 。安装完成后,在 macOS 上启动 ollama 应用程序,在 Linux 上通过 ollama serve 启动,可通过 ollama list 确认是否安装成功。运行大模型时,在命令行中输入相应命令即可,模型会自动下载到本地。在 Python 程序中使用时,需确保 ollama 服务已开启并下载好模型。
2025-02-22
阶跃星辰、通义千问、Gemini三个视频理解模型哪个收费更便宜
以下是阶跃星辰、通义千问、Gemini 三个视频理解模型的收费情况: 阶跃星辰:输入价格为 0.005~0.015 元/千 tokens,输出价格为 0.02~0.07 元/千 tokens。 通义千问:Qwenvlplus 模型调用价格为 0.008 元/千 tokens,训练价格为 0.03 元/千 tokens。 Gemini 未提及收费信息。 综上,从已有的信息来看,通义千问的收费相对可能更便宜,但具体还需根据您的使用情况和需求来判断。
2025-04-10
通义千问的视频理解模型怎么使用
通义千问的 Qwen2.5VL 视频理解模型具有以下特点和使用方式: 版本:推出 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作,如给指定朋友送祝福、电脑修图、手机订票等。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai
2025-04-09
通义千问发展历程
通义千问是阿里云推出的大语言模型。于 2023 年 4 月 11 日在阿里云峰会上正式发布 1.0 版本。9 月 13 日,通义千问大模型首批通过备案。10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。9 月,通义千问 2.5 系列全家桶开源。
2025-03-20
阿里的千问大模型在行业内处于一个什么样的水平
阿里的通义千问大模型在行业内处于领先水平。 通义千问 2.5 正式发布并开源 1100 亿参数模型,在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型,受到开发者和生态伙伴的热情支持。百炼平台也升级支持企业 RAG 链路,提供更灵活的企业级检索增强服务。通义灵码推出企业版,满足企业定制化需求,已在多个领域落地应用。 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。支持官方 Chat、API 接口、Hugging Face Demo 等多种方式,展示其顶尖性能与灵活应用场景。 Qwen2.5VL 是新一代视觉语言模型,可解析 1 小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。具备复杂任务执行能力,覆盖更多实际场景如票据解析、商业分析等。 10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。
2025-03-14
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14