Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请介绍聚类分析、异常检测算法

Answer

聚类分析是一种将数据集中相似的数据点分组在一起的方法。当数据集中的簇不是明显的球形或高斯分布时,KNN 算法也可用于聚类任务。

异常检测算法用于识别数据集中偏离常态的异常数据点。KNN 算法由于可以识别与大多数邻居不同的点,常用于异常检测。此外,大语言模型(LLM)在识别模式和趋势方面表现出色,也适用于异常检测任务,能够基于一个或多个列值来识别异常数据点。

Content generated by AI large model, please carefully verify (powered by aily)

References

[算法学习] KNN近邻算法 分类/回归/聚类

分类问题:例如文本分类、图像识别、手写数字识别、医学诊断等。回归问题:例如房价预测、股票价格预测等。异常检测:由于KNN可以识别与大多数邻居不同的点,它常用于识别异常值或离群点。推荐系统:在推荐系统中,KNN可以用来找到与用户兴趣最相似的其他用户或物品,并基于这些相似性进行推荐。图像分割:在图像处理中,KNN可以用来识别图像中的区域,并进行图像分割。聚类分析:KNN也可以用于聚类任务,尤其是当数据集中的簇不是明显的球形或高斯分布时。

我如何夺冠新加坡首届 GPT-4 提示工程大赛-翻译自宝玉

LLMs在识别模式和趋势方面表现出色。这得益于它们在庞大且多样化的数据上接受的广泛训练,能够洞察到复杂的模式,这些模式可能不是一眼就能看出来的。这使它们非常适合执行基于模式查找的任务,例如:异常检测:基于一个或多个列值,识别偏离常态的异常数据点。聚类:将具有相似特征的数据点按列分组。跨列关系:识别各列之间的联合趋势。文本分析(适用于文本列):根据主题或情感进行分类。趋势分析(针对有时间维度的数据集):识别列中的模式、季节性变化或趋势。对于这些基于模式的任务,单独使用LLMs可能实际上会在更短的时间内比使用编程代码产生更好的结果!接下来,我们将通过一个例子来详细说明这一点。

Others are asking
minimax的大模型算法热点
以下是关于 MiniMax 的大模型算法热点的相关内容: 1. MiniMax 有两个适合特定任务的大模型:MiniMaxText01 支持 400 万 token 的上下文,能应对超长文章;T2A v2(speech01turbo)拥有最好的声音复刻效果。可以通过其开放平台(https://platform.minimaxi.com/login )进行注册登录及实名认证。首次注册会赠送 15 元,API 消耗会消耗余额,生成一条 3 分钟的语音,文本模型消耗 1 分钱,语音模型消耗 5 毛钱,克隆音色有额外费用,现优惠 9.9 元。接着创建 API Key 并保存好,以及 groupid。还可以克隆声音,相关链接为 https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning ,有创建 voice id、上传复刻音频及音频 prompt、试听文本等操作,勾选用户协议点击“克隆”选项一段时间后完成克隆,使用填写的 voice id 生成声音。 2. MiniMax 推出了 MoE 架构的新模型,其“星野”是目前国内最成功的 AI 陪聊 APP。 3. MiniMax 近日发布新模型 MiniMax01,采用线性注意力机制和 MoE 架构,显著提升上下文处理能力,支持超长上下文(400 万 Token),在多项学术基准上表现优异,超越许多国际顶尖模型。其开源旨在促进长上下文研究和应用,加速 Agent 时代的到来,通过精细架构设计和训练策略,在处理长输入时实现接近线性的计算效率。
2025-03-28
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
人工智能算法的发展历程是怎么样的?
人工智能算法的发展历程大致如下: 早期的国际象棋对弈程序以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时搜索空间巨大,随后通过学习人类棋手对局采用了基于案例的推理。现代能战胜人类棋手的对弈程序基于神经网络和强化学习,能从自身错误中学习,且学习速度快于人类。 创建“会说话的程序”的方法也在变化,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得了巨大成功。 在机器学习方面,算法通过分析数据和推断模型建立参数,或与环境互动学习,人类可注释数据,环境可为模拟或真实世界。 深度学习是一种机器学习算法,由 Geoffrey Hinton 开创,1986 年发表开创性论文引入反向传播概念,2012 年 Hinton 和学生表明深度神经网络在图像识别方面击败先进系统。为使深度学习按预期工作,需要数据,如李飞飞创建的 ImageNet。 AI 技术发展历程包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点有大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速等。
2025-03-26
ai算法该从哪里开始学习
学习 AI 算法可以从以下几个方面入手: 1. 神经网络和深度学习方面: 了解麦卡洛克皮兹模型,感知机的学习机制,如罗森布拉特受唐纳德·赫布基础性工作的启发想出的让人工神经元学习的办法,包括赫布法则。 熟悉感知机学习算法的具体步骤,如从随机权重和训练集开始,根据输出值与实例的差异调整权重,直到不再出错。 2. Python 与 AI 基础方面: 掌握 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其关系,以及 AI 的发展历程和重要里程碑。 巩固数学基础,如统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 学习算法和模型,包括监督学习(如线性回归、决策树、支持向量机)、无监督学习(如聚类、降维)、强化学习的基本概念。 了解模型的评估和调优方法,如性能评估(包括交叉验证、精确度、召回率等)、模型调优(如使用网格搜索等技术优化模型参数)。 熟悉神经网络基础,如网络结构(包括前馈网络、卷积神经网络、循环神经网络)、激活函数(如 ReLU、Sigmoid、Tanh)。 3. 强化学习方面: 了解在人工智能发展中,利用新算法解决挑战性问题的思路,如在某些领域找到适合的模拟任务环境进行训练和学习,不依赖人类专家先验。 以 AlphaZero 为例,理解其模型公式,包括定义神经网络、网络权重、棋盘状态表示、网络输出等。
2025-03-15
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
文章AI度检测
文章原创度检测通常包括以下两大步骤: 1. 从互联网或文章库中定位相似内容: 将文章细分为小句或段落,便于逐个对照。 从每个细分内容中提炼关键词或词组,在网络或专业数据库中搜寻可能的相似内容。 2. 评估文章与搜索出的内容的相似程度评估原创度。 此外,文中还提到了一种将文章手搓成 Token 炸弹的有趣玩法,包括编码和解码的方法。例如,在特定网站进行操作,将按钮切换到“Decode”可解码,切换到“Encode”可编码,输入隐藏信息并选择表情或字母,然后复制生成的内容。由于 Unicode 的特性,隐藏信息跨平台时不会被格式化,但在微信发送时有 1.5 万个 token 左右的极限值,超过则无法发送。在爬虫和不同系统中也有不同的表现,如在 Windows 系统导出 txt 文件会出现乱码,而在 Mac 系统打开则基本正常。这种 Token 炸弹玩法还可以用于躲避信息审核员、传输信息或当作数字水印。
2025-04-12
AIGC 检测
以下是一些常见的 AIGC 检测相关的信息: AIGC 论文检测网站和工具: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 6. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 判断一张图片是否 AI 生成: 可以使用一些网站,例如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中可能存在误判,比如将结构严谨的真实摄影作品识别为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。
2025-03-18
检测图片造假
以下是关于检测图片造假的相关内容: 胶囊网络(CapsNets)能够有效检测图片造假,减少过拟合,提高检测精度,对不良数据适应力更强,还能适应输入数据的仿射变换,但在大数据集和背景复杂的输入图像等领域运作不太理想,需要进一步研究和改进。 对于判断一张图片是否为 AI 生成,可通过以下方式: 培养自己的鉴赏能力,训练大脑模型。 利用专门的网站,如 ILLUMINARTY(https://app.illuminarty.ai/),但此类网站的鉴定逻辑算法可能存在不足,如将结构严谨的真实摄影作品误判为 AI 作图。 依赖艺术知识储备,了解名画风格、画质与笔触表现力等。 注重细节,如人物肢体是否异常、背景花纹和底纹文字信息等。
2025-03-01
我想做一个论文检测器 判断是不是用AI写的
以下是一些用于判断论文是否由 AI 写作的检测网站和工具: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 6. :提供免费的 AI 内容检测工具,识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容,适用于教育和出版行业。上传文档或输入文本,系统分析提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中,系统分析提供结果。 在论文写作领域,也有一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-01
免费ai检测工具
以下是一些免费的 AI 检测工具: 1. :提供免费的 AI 内容检测工具,能识别文本是否由 AI 生成。使用方法是将文本粘贴到在线工具中,点击检测按钮获取分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 4. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 5. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 6. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能获取分析报告。 7. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 8. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。 9. AI Detector by ContentDetector.AI:海外的内容检测工具。
2025-02-14
ai检测
以下是一些关于 AI 检测的相关信息: AIGC 论文检测网站和工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。使用时输入文本或上传文档,系统扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 生成式 AI 季度数据报告 2024 月 1 3 月: 文字 教育方面,Humata Al 月访问量减少 129 万,降低了 40%;Elicit 月访问量减少 121 万,降低了 87%;Laion 月访问量减少 49 万,降低了 84%。 23 年 4 月至 24 年 3 月月访问量增量 Top10 和减量 Top5 有相关数据。 赛道方面,天花板潜力为数亿美金,总体趋势平稳增长,月平均增速为 121 万 PV/月,原生产品占比高。竞争方面,Top1 占比 39%,Top3 占比 88%,马太效应弱,网络效应弱,大厂入局少,大厂占比低,技术门槛低。Top1 公司(非大厂)为 GPTZero。 AI ReviewAI 评论(测试版): AI Review 是一项可查看代码库中最近更改以捕获潜在错误的功能,可单击各个审阅项查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让 AI Review 更有利,可提供自定义说明让 AI 专注于特定方面,如性能相关问题。 目前有几个审核选项,如查看工作状态、查看 Diff with Main Branch、查看上次提交。
2025-02-14
trae ai编程客户端的buide模式“客户端异常,请稍后再试”
Trae 的 Builder 模式相关信息如下: Trae 提供了两种模式,其中 Builder 模式可以帮助从 0 开发一个完整的项目,对代码文件的任何更改都会自动保存。 使用 Builder 模式的步骤: 在电脑上新建一个文件夹,文件夹名字可自定义,如“helloworld”。 使用 Trae 打开这个文件夹,在弹出的弹层里选中新建的文件夹。 点击右上角的“Builder”按钮切换到 Builder 模式。 在 Builder 模式下的使用案例,如生成一个贪吃蛇游戏:打开 Builder 模式,直接输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写过程,期间需要手动接入进行文件审查,在提示中点击“全部接受”。代码生成完成之后,Trae 自动运行命令启动页面,点击运行,在 Webview 中即可看到实现的游戏效果。 如果您在使用 Trae 的 Builder 模式时出现“客户端异常,请稍后再试”的提示,建议您稍后再尝试操作,或者检查网络连接等是否正常。
2025-03-10
comfyui提示词验证异常怎么解决
如果 ComfyUI 提示词验证异常,您可以尝试以下解决方法: 1. 对于翻译失效的问题: 双击“embedded_instail”进行安装。 用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,以实现正常翻译。 2. 注意如果想要引用负向 embedding,要确保文件夹路径中没有中文,否则可能导致路径错误。 此外,ComfyUI 本身自带的【clip 文本编码器】对权重的识别可能不够准确,您可以使用插件提供的更高级的编码器,并选择不同的权重插值方式。例如,当从别的网址复制提示词过来效果不一样时,可能是因为 ComfyUI 读不懂提示词中的权重表达。 在模型使用和工作流方面,可能会遇到诸如 inspire 节点安装问题、负向提示词和系数权重的疑问、添加提示词队列报错、工作流的保存和使用、放大图片未显示及节点未跑通、只跑工作流后面一段等问题,相应的解决方法包括更换并加载默认工作流尝试、将随机换成固定等。同时,还包括节点打包操作、报错处理、模型选择及参数设置、快捷键及资源获取等方面的内容。
2025-03-06