Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

prompt 管理工具

Answer

以下是一些与 prompt 管理工具相关的信息:

  • 文本类 Prompt 网站:
    • Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址是https://learningprompt.wiki/
    • FlowGPT:国外最大的 prompt 站,内容全面且更新快,网址是https://flowgpt.com/
  • 提示管理工具:
    • LangChain Hub:LangChain 推出的提示词上传、浏览、拉取和管理的工具。
    • PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,作为集中化平台,便于开发者在 AI 项目中管理提示,实现无缝协作和工作流程优化,开发指向PromptPal GitHub
  • Midjourney 中的 Prompts:Prompts 是 Midjourney Bot 中的指令,用于启动新任务或创建图像组,可以是简单单词或短语,也可以是更详细的指令和参数。Midjourney Bot 会根据提供的 Prompt 生成图像网格,您可以选择其中图像并进行修改和操作。您可以了解如何编写基础提示信息,或者探索如何通过艺术媒介、地点和时期的描述来改变图像
Content generated by AI large model, please carefully verify (powered by aily)

References

Prompt网站精选

|站点名|网站介绍|地址|附件|<br>|-|-|-|-|<br>|Learning Prompt|授人以渔,非常详尽的Prompt学习资源,包括ChatGPT和MidJourney|[https://learningprompt.wiki/](https://learningprompt.wiki/)||<br>|FlowGPT|国外做的最大的prompt站,内容超全面,更新快|[https://flowgpt.com/](https://flowgpt.com/)||<br>|LangChain Hub:提示词管理工具|LangChain推出了LangChain Hub,一个提示词上传、浏览、拉取和管理的工具。

问:有没有 AI prompts 测试框架呀

开发指向:[PromptPal GitHub](https://github.com/PromptPal/PromptPal)PromptPal是一个专为AI领域中的初创公司和个人开发者设计的提示管理工具。它作为一个集中化平台,让开发者能够在AI项目中轻松管理提示,实现无缝协作和工作流程优化。

Midjourney官方指南

Prompts是Midjourney Bot中的一种指令,用于启动一项新的任务或创建一组图像。它们可以是一个简单的单词或短语,也可以是一组更详细的指令和参数。Midjourney Bot会根据您提供的Prompt生成一个图像网格,您可以选择其中的图像并进行各种修改和操作。[了解如何编写基础提示信息](https://docs.midjourney.com/prompts),或者[探索如何通过艺术媒介、地点和时期的描述来改变图像](https://docs.midjourney.com/explore-prompting)。

Others are asking
prompt 管理工具
以下是一些常见的 prompt 管理工具和相关网站: PromptPal: 开发指向: 特点: 专为 AI 领域中的初创公司和个人开发者设计。 作为集中化平台,便于在 AI 项目中管理提示,实现无缝协作和工作流程优化。 支持本地部署和云原生,架构轻量级。 简易设置,可通过 Docker 快速部署。 集成多种数据库解决方案。 提供 SDK 支持,简化不同语言的集成过程。 具备提示跟踪与分析功能。 提供协作工具。 ChainForge: 开发指向: 特点: 开源的可视化编程环境,用于测试大型语言模型的提示。 支持多模型测试,可同时查询多个 LLMs。 能进行响应质量比较,在不同提示、模型和设置之间比较。 可设置评估指标,可视化结果。 支持多对话管理,测试模板参数。 Promptknit: 网站: 文本类 Prompt 网站: LangChain Hub:提示词管理工具,LangChain 推出的提示词上传、浏览、拉取和管理的工具, 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化基于 LLM 的人工智能应用程序的端到端开发周期, 未来力场:对 OpenAI 官方文档清晰解读, 其他 Prompt 相关网站: FlowGPT:国外最大的 prompt 站,内容全面,更新快, PromptPort(支持中文):AI Prompt 百科辞典,聚合市场上大部分优质的 prompt 词库, Learning Prompt:详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney, ChatGPT Shortcut:提供众多 ChatGPT 提示词使用模板, ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与他人分享, Prompt Extend:让 AI 帮你自动拓展 Prompt,
2025-02-25
知识库管理工具
以下是关于知识库管理工具的相关内容: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式,如需更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库以保持时效性。 创建并使用知识库: 维护知识库内容:为提升召回准确率,可删除、新增或修改知识库内容。 管理知识库:在知识库页面可看到已创建的知识库及相关信息,单击知识库或编辑图标进入详情页面,可进行新增内容、删除内容、更新单元内分段、开启引用等操作。 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在 Bots 页面选择指定 Bot 并进入详情页。 4. 在 Bot 编排页面的知识库区域单击加号图标添加指定的知识库。 5. (可选)添加后可在自动调用下拉界面内调整配置项,包括最大召回数量、最小匹配度、调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内选择添加 Knowledge 节点。
2024-12-31
提示词管理工具
以下是一些提示词管理工具: Learning Prompt:授人以渔,是非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网站地址为。 FlowGPT:国外最大的 prompt 站,内容超全面,更新快,网站地址为。 LangChain Hub:LangChain 推出的提示词上传、浏览、拉取和管理的工具。很快也会添加代理功能。目前需要邀请码才能使用,没有的话可以浏览别人提交的提示词,筛选项丰富,不止支持问题类型,也支持筛选提示词生效的模型。页面内不只有提示词,也有对应的向量数据检索或者搭配的 json 格式之类的,还可以进行版本管理。网站地址为
2024-09-14
有哪些不错的AI项目管理工具
以下是一些不错的 AI 项目管理工具: 1. 项目管理和任务跟踪工具: Jira、Trello 等已开始集成 AI 功能,可辅助制定计划、分配任务、跟踪进度。 2. 文档和协作工具: 微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑等提供帮助。 云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:可帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具:如文心一格、Vega AI 等,可快速生成创意图像素材。 此外,还有以下具体的产品经理 AI 工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(hypertype.co) 6. 会议信息:AskFred(fireflies.ai/apps) 7. 团队知识库:Sense(senseapp.ai) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(ellie.ai) 11. 企业自动化:Moveworks(moveworks.com) 另外,著名的项目管理工具 Height 发布了他们的 AI 功能 Height Copilot,具有自动主持站会、将反馈创建为待执行任务、总结历史对话内容、提醒并防止重复创建任务、起草版本发布说明、一键生成针对任务的建议和利用 AI 进行头脑风暴等功能。
2024-09-10
给我推荐一个知识管理工具AI 助手,方便我每天将学习到的新概念和知识博客整理提炼
以下为您推荐使用 Coze 和飞书多维表格来打造专属 AI 智能体,提升知识管理效率: 写在开头,最近学习 AI 时,每天都有大量新内容来不及看,起初将文章都丢进微信文件传输助手,但时间一长出现诸多问题,如分不清阅读状态、遗忘收藏原因等。调研常见的稍后读解决方案,如 Pocket、Instapaper、简悦、Notion 等,要么与个人知识管理体系不符,要么步骤复杂、依赖人工归纳管理,不如文件传输助手方便。基于此,研究智能体时灵光一现,给自己定制一个 AI 稍后读助手,帮助摆脱归纳工作,自动整理阅读清单,并按个人兴趣推荐阅读计划。
2024-08-31
知识管理工具
以下是一些知识管理工具: Semafind:这是一个先进的 AI 驱动的知识管理工具,用户可以通过以短句子形式存储信息,创建一个全面的知识库。其产品官网为 https://www.semafind.com/。 Albus:一款 AI 驱动的知识管理工具,能帮助用户以不同方式处理知识,发现新角度和问题,还可通过添加笔记和图片来组织内容,轻松控制和展示内容,快速形成主题板,允许用户探索、混合、编辑和展示内容。其官网为 https://www.albus.org/。 在搭建知识体系时,可参考以下步骤: 明确需求和兴趣点,选择相关信息源,确保信息质量与相关性。 通过各种工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制。 使用不同的笔记方法和工具,将收集的信息进行分类、标签化和链接,形成结构化的知识体系,便于检索和应用。 通过定期复习、思考和实践,将外部信息转化为个人知识,并在实际工作和生活中应用这些知识,解决具体问题。
2024-06-23
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12