Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智谱跟其他厂商的差异和优势是什么

Answer

智谱与其他厂商的差异和优势主要体现在以下几个方面:

  1. 模型研发:一年间推出了 4 代 GLM,一直是国内能力最好的模型之一。22 年就和清华一起自研了 GLM130B。
  2. 技术来源:由清华大学计算机系技术成果转化而来,背后有清华大学研发团队的科研成果支持。
  3. 产品设计:以 ChatGPT 为对标,努力打造类似的用户体验。
  4. 智能体应用:是国内首批开放智能体应用的 AI 公司之一,在智能体开发和模型优化方面积累了丰富经验和技术。
  5. 性能表现:在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。
  6. 产品体系:合作研发了双语千亿级超大规模预训练模型 GLM-130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎。基于此模型打造了 ChatGLM,还推出了认知大模型平台 Bigmodel.ai,包括 CodeGeeX 和 CogView 等产品,提供智能 API 服务。
Content generated by AI large model, please carefully verify (powered by aily)

References

AGI万字长文(上)| 2023回顾与反思

另外,字节和腾讯都有团队在和外部大模型合作,很多外服务和产品也不是用的自己的模型。创业公司。目前明确看到有好模型、好产品的第一梯队公司大概如下:智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点

给小白的AI产品推荐

接下来,让我们来谈谈智谱清言。在中国AI领域,智谱AI的模型可以说是开创性的(22年就和清华一起自研了GLM130B)。这主要归功于其背后的技术,源自清华大学研发团队的科研成果转化。从模型质量来看,智谱AI的表现相当出色。在产品设计方面,智谱AI明显以ChatGPT为对标,努力打造类似的用户体验。值得一提的是,智谱AI是国内首批开放智能体应用的AI公司之一。这意味着他们在智能体开发和模型优化方面已经积累了丰富的经验和技术。特别是在逻辑推理和处理复杂提示词方面,智谱AI表现出了明显的优势,这使得它在处理需要深度思考和分析的任务时表现出色。

中国AI 生态2023上半年投资地图

https://www.sequoiacap.cn/|公司名|创始人|介绍|标签|网站|附件|<br>|-|-|-|-|-|-|<br>|智谱AI|创始人:唐杰|关于智谱AI<br>智谱AI是由清华大学计算机系技术成果转化而来的公司,致力于打造新一代认知智能通用模型。公司合作研发了双语千亿级超大规模预训练模型GLM-130B,并构建了高精度通用知识图谱,形成数据与知识双轮驱动的认知引擎,基于此模型打造了ChatGLM([chatglm.cn](http://chatglm.cn))。此外,智谱AI还推出了认知大模型平台Bigmodel.ai,包括CodeGeeX和CogView等产品,提供智能API服务,链接物理世界的亿级用户、赋能元宇宙数字人、成为具身机器人的基座,赋予机器像人一样“思考”的能力。|大模型|[https://www.zhipuai.cn/](https://www.zhipuai.cn/)||

Others are asking
智谱清言
智谱清言是智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力还有优化空间。 知识百科与其他第一梯队模型相比稍显不足。综合来看,是很有竞争力的大模型。 适合应用: 场景广泛,根据 SuperCLUE 测评结果,优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。
2025-03-14
智谱
智谱 AI 相关信息如下: 2024 年 10 月 AI 行业大事记中,智谱开源了文生图模型 CogView3Plus3B。 智谱 AI 开源的语言模型列表(Chat 模型): ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数。 ChatGLM26B:第二代 ChatGLM 对话模型,相比一代模型性能更强,基座模型的上下文长度从 2k 扩展到 32k,在对话阶段使用 8K 的上下文长度训练,推理速度相比初代提升 42%。 ChatGLM26Bint4:ChatGLM26B 的 int4 量化版本,具备最小 5.1GB 显存即可运行,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
2025-02-17
智谱清言
智谱清言是智谱 AI 和清华大学推出的大模型产品,其基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点: 工具使用排名国内第一。 在计算、逻辑推理、传统安全能力上排名国内前三。 更擅长专业能力,但代码能力有优化空间,知识百科与其他第一梯队模型相比稍显不足。综合来看,是很有竞争力的大模型。 适合应用: 场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。 在较复杂推理应用上效果不错。 广告文案、文学写作方面也是很好的选择。 在对结构化 prompt 的测试和反馈中,输入智谱清言后,问题和文心一言一样,需先改写再看输出效果。改写后效果不错,能理解 prompt,输出内容感觉良好。这里最大的体会是结构化 prompt 非常重要,要从结构化开始,且要不断迭代,根据输出结果不断优化。
2025-01-20
智谱AI插件在哪儿调用
智谱 AI 插件的调用方式如下: 针对智谱,重复类似操作,调用的是 https://chatglm.cn/chatglm/backendapi/v1/conversation/recommendation/list 接口。这里只用到了 conversation_id 一个字段,用的是 GET 请求。通过此接口返回问题,参数用的是整轮对话窗口的唯一 Id:66c01d81667a2ddb444ff878 。 打开飞书多维表格,新增列时,您可以选择字段捷径,在字段捷径的 AI 中心,找到智谱 AI 的字段插件。智谱 AI 近期发布了 3 个飞书多维表格的字段插件:AI 内容生成、AI 视频生成和 AI 数据分析。 在微信超级 AI 知识助手教学(上)—智谱共学营智能纪要中,有智谱大语言模型的使用与功能介绍,包括角色扮演模型设置、变量插入方法、插件调用情况等。还提到了智浦轻颜的功能与应用,如文章总结功能、视频生成功能、画图功能等,以及多维表格相关内容。
2025-01-02
智谱AI插件在哪儿
智谱 AI 插件可在飞书多维表格中找到。具体操作如下: 1. 打开飞书多维表格,新增列时,选择字段捷径。 2. 在字段捷径的 AI 中心,就能找到智谱 AI 的字段插件,包括 AI 内容生成、AI 视频生成和 AI 数据分析插件。 智谱 AI 的 3 个字段插件均免费,您可以尝试将其运用在工作中。同时,若想基于 GLM4Flash 开发更多免费插件,可参考。
2025-01-02
COZE 和智谱AI的优缺点对比
COZE 的优点: 1. 逼真且有沉浸感:通过图片和文字描述模拟急诊室的真实场景,用户可体验到紧张真实的医疗环境。可进一步增加场景细节,如急诊室的声音效果,增强沉浸感。 2. 互动性强:设置多个决策点,用户需做出选择,提高用户参与感和学习效果。可引入更多分支场景,根据用户不同选择生成不同结局,提高互动的深度和多样性。 3. 情感共鸣:通过详细的病人背景故事,用户能更好理解患者处境,增强同理心。可增加更多病人案例,覆盖不同病情和背景,使情感共鸣更丰富多样。 4. 延续字节风格,能自己做闭环,可在工作流基础上用用户界面包装成产品发布。 COZE 的缺点:商业化探索尚未铺开,用户来源不明确。目前没有明确信息表明其是否开源,社区参与和开源协作程度可能不如 Dify。 智谱 AI 的优点: 目前信息中未明确提及智谱 AI 的具体优点。 智谱 AI 的缺点: 目前信息中未明确提及智谱 AI 的具体缺点。 两者的对比: 1. 开源性:Dify 是开源的,允许开发者自由访问和修改代码;Coze 目前没有明确信息表明其是否开源。 2. 功能和定制能力:Dify 提供直观界面,结合多种功能,支持通过可视化编排基于任何 LLM 部署 API 和服务;Coze 提供丰富插件能力和高效搭建效率,支持发布到多个平台作为 Bot 能力使用。 3. 社区和支持:Dify 作为开源项目有活跃社区,开发者可参与共创共建;Coze 可能更多依赖官方更新和支持,社区参与和开源协作程度可能不如 Dify。
2024-12-31
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
WayToAGI是什么?是哪家厂商做的?
WaytoAGI 直译就是通往 AGI 之路,它是一个自组织的AI社区,发起人是 AJ 和轻侯。AGI 指通用人工智能。
2024-09-29
国内大模型厂商对比
以下是国内大模型厂商的相关情况: 8 月正式上线的国内大模型: 北京的五家企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海的三家企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 聊天状态下能生成 Markdown 格式的:智谱清言、商量 Sensechat。 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)。 受限制使用的:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)。 特色功能:昇思——生图,MiniMax——语音合成。 中文大模型基准测评 2023 年度报告中的情况: 从大厂和创业公司的平均成绩来看,大厂与创业公司差值约 6.33 分,较 11 月份差距在增大,说明大厂在大模型竞争中长期资源投入方面有一定优势。 过去八个月国内模型在 SuperCLUE 基准上的前三名: 12 月:文心一言 4.0 11 月:文心一言 4.0 10 月:BlueLM 9 月:SenseChat3.0 通过 SuperCLUE 测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言 4.0、通义千问 2.0 引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。 从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2024-08-30
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
ai模型chatglm,百川大模型,通义千问,yi系列的模型厂商和团队背景,ai产品调用api的成本
以下是关于您提到的 AI 模型的厂商和团队背景以及 AI 产品调用 API 成本的相关信息: 厂商和团队背景: 通义千问:由阿里开发,接口可在 https://dashscope.console.aliyun.com/ 创建 API key。 智谱 AI(ChatGLM):由智谱 AI 开发,相关网址为 https://chatglm.cn 。 百川大模型:由百川智能开发,网址为 https://www.baichuanai.com/ 。 关于 AI 产品调用 API 的成本: 目前国内的大模型大多限制一定免费额度的 Token,各平台 API 调用计费是按计算 token 费率定价,具体收费标准不同,需自行留意对应官网。例如 GPT3.5、GPT4、文心一言、讯飞星火、通义千问、mimimax 等,收费标准不一,不做统一赘述。
2024-08-20
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
ai agent和workfolw的差异
AI Agent 和 Workflow 的主要差异如下: 任务编排方式:AutoGPT 的任务由大模型自动编排,而 Workflow 中的子任务是人为编排的。 带来的优化: 流程中可加入人类 Knowhow,弥补模型知识的不足。 专家测试试跑,减少生产环境中的无效反思,提升 Agent 的表现。 引入图的概念,灵活组织节点,连接各类工具,包括套工具、套其他 Agent、写代码用硬逻辑处理、接大模型进行判断等,极大地提高了灵活性和可控性,提升了 Agent 能力的上限。 解决的问题:Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解为小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 涉及的概念: 记忆:分为短期记忆和长期记忆,短期记忆将上下文学习视为利用模型的短期记忆学习,长期记忆提供长期存储和召回信息的能力。 工具:学会调用外部不同类型 API 获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 动作:大模型根据问句、上下文规划、各类工具决策出最终执行的动作。 人机协同关系:生成式 AI 的人机协同分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种模式,不同模式下人与 AI 的协作流程有所差异。 Embedding 模式:人类完成大多数工作。 Copilot 模式:人类和 AI 协同工作。 Agents 模式:AI 完成大多数工作。 工作流变革:使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 信息处理逻辑:抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 对获取信息方式的重塑:搜索引擎和基于大模型的聊天机器人在解决问题方面目标一致,ChatGPT 的发布被认为将对传统搜索引擎带来颠覆。
2025-03-18
我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴
以下是对国内外大语言模型产品的整理及差异: 国内大语言模型: 通用模型:如文心一言、讯飞星火等,能够处理自然语言。 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 国外大语言模型: 具有代表性的项目:GPT4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 时间轴方面: 国内:去年 7 月大模型百花齐放。 国外:相关模型也在不断发展和更新。 在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。
2025-03-07
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
deepseek的优势是什么?
DeepSeek 的优势包括以下方面: 1. 性能与成本:展示出媲美领先 AI 产品的性能,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 2. 文字能力:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。 3. 数学能力:经过优化,表现不错。 4. 模型特点: 推理型大模型:通过理解用户的真实需求和场景来提供答案,不需要用户提供详细步骤指令。 更懂人话:能够理解用户用“人话”表达的需求,无需特定提示词模板。 深度思考:回答问题时能够进行深度思考,非简单罗列信息。 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 开源与创新:开源了多模态模型 JanusPro,在参数上领先,具备多种能力,通过优化训练策略、海量数据和大规模参数实现更强智能表现,统一 Transformer 架构,提供多种规模,全面开源,支持商用,部署使用便捷,Benchmark 表现优异。
2025-03-24
微调大模型的优势与运用的功能场景是什么?微调具体步骤是?
微调大模型具有以下优势和运用的功能场景: 优势: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 功能场景:适用于需要在特定领域(如法律、医学等)获得更优表现的情况。 微调大模型的具体步骤如下: 从参数规模的角度,大模型的微调分成两条技术路线:全量微调(FFT)和参数高效微调(PEFT)。全量微调是对全量的模型参数进行全量的训练,PEFT 则只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续大模型的训练过程,通过调整模型本身的参数来提高性能。 您可以参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2025-03-23
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
部署大模型的一体机有什么优势
部署大模型的一体机具有以下优势: 1. 语言翻译方面: 语境理解与适配:能够通过深度的上下文分析,理解语言背后的真正含义,避免词不达意和语境脱节的问题,尤其在处理隐喻、习语或文化特征的文本时,能更精准地捕捉并传达原文意图。 流畅自然的翻译输出:通过对大量自然语言数据的学习,能够生成更加流畅、自然且地道的翻译,接近母语水平,保持原文的语言风格和情感色彩。 灵活性与多场景适应:强大的适应性,能够根据不同的翻译场景灵活调整策略,在多场景翻译中表现得更具灵活性和精准度。 文化适配与行业专用翻译:能够深入理解语言背后的文化内涵,避免因文化差异导致的误解或偏差,在专业领域能提供更加专业且符合行业标准的翻译结果。 2. 模型部署方面: 内存优化:由于大模型参数众多,内存需求大,在实际部署时会进行模型压缩,使用内存占用更小的数据类型,如 16 位的浮点数,可直接减少内存使用。 解决传输瓶颈:在训练大模型中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点。 3. 硬件架构方面: 存算一体架构:运行几百亿个参数的大模型,存算一体架构是最佳选择,可避免数据搬运。 4. 知识结合方面: 大模型在通用知识方面表现出色,但对专业领域知识了解有限。将领域知识结合进大模型的方法包括重新训练、微调、RAG、关键词工程和加长 Context 等。目前在学术界,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。
2025-03-19