Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Agents群聊

Answer

"Agents群聊"可能指的是多个智能体(agents)参与的对话或交流。在人工智能领域,智能体可以是聊天机器人、虚拟助手或其他形式的自动化程序,它们能够模拟人类对话或执行特定任务。以下是一些关于使用智能体进行群聊的关键点:

  1. 多智能体系统(MAS):在多智能体系统中,每个智能体都有自己的角色和功能,它们通过协作来解决复杂问题。
  2. 自然语言处理(NLP):智能体通常依赖NLP技术来理解和生成自然语言,以便在群聊中进行有效沟通。
  3. 上下文理解:在群聊中,智能体需要能够理解上下文,包括对话历史、参与者的意图和情感状态。
  4. 对话管理:智能体需要能够有效地管理对话流程,包括话题转换、冲突解决和保持对话连贯性。
  5. 个性化:智能体应能够根据用户的个性和偏好调整其回应,以提供更个性化的交流体验。
  6. 隐私和安全:在群聊环境中,智能体必须遵守隐私和安全规则,确保用户数据的保护。
  7. 错误处理:智能体应能够优雅地处理误解或错误,例如通过请求澄清或承认不理解某些内容。
  8. 学习能力:理想情况下,智能体应该能够从群聊互动中学习,以改进其未来的响应。
  9. 多模态交互:除了文本交流,智能体还可以通过语音、图像或其他模态参与群聊。
  10. 用户界面(UI):智能体的群聊功能通常通过聊天界面实现,UI设计应支持流畅的对话体验。
  11. 可扩展性:在大规模群聊中,智能体需要能够处理多个对话线程和大量用户输入。
  12. 伦理和行为准则:智能体应遵守既定的伦理标准和行为准则,避免不当行为或冒犯性内容。
  13. 集成和兼容性:智能体应能够与现有的通信平台和工具集成,以便于部署和使用。

在实际应用中,智能体群聊可以用于客户服务、教育、娱乐、信息检索等多种场景。随着技术的发展,智能体的群聊能力有望变得更加先进和人性化。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
multi agents讲解
多智能体(MultiAgent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型(LLM)的出现,以 LLM 为核心构建的 Agent 系统受广泛关注。目前常见框架集中在单 Agent 场景,其核心是 LLM 与工具协同配合,可能需与用户多轮交互。而多 Agent 场景为不同 Agent 分配角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是 LLM 或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及每条消息的记录字段增加。 此外,吴恩达最新演讲提到四种 Agent 设计范式,Reflection 和 Tool Use 相对经典且广泛使用,Planning 和 Multiagent 较新颖有前景。Reflection 类似于 AI 自我纠错和迭代,如让 AI 写代码并自我检查修改。Tool Use 指大语言模型调用插件拓展能力。在一些场景中,Reflection 可用两个 Agent,一个写代码,一个 Debug。
2025-03-14
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
实现一个简单的 function calling agents ,要求小白可以看懂
以下是一个关于实现简单的 function calling agents 的指导,以便小白能够理解: 实现原理: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions 和 REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,通过识别 LLM 返回的调用工具的字典提取对应值传入工具函数,将工具返回结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口可改为回传给 user 角色。 实现方式的比较与建议: 1. JSON Output:通过 Prompt 方式让模型输出 JSON 格式内容,但 Prompt 麻烦,输出不稳定,串业务成本高。 2. JSON Mode:官方 JSON Output,与 Tools 适用场景不同,JSON mode 为输出 JSON 存在,Tools 为 Call API 存在。 3. 从可控角度推荐 Function Calling 和 Tools 实现: 放弃 JSON mode,模型输出 JSON 仍可能出错,模型厂家对 Function Calling 有微调优化。 降低 System prompt 依赖,能在 Tools 里写的尽量写在里面。 API Response 增强 Prompt,准确率高。 尽量让模型做选择而非填空,减少 token 输出,提高速度和准确率。 利用 Tools 做 Route,构建 Multi Agent,术业有专攻。 此外,在初级菜鸟学习 Langchain 做简单 RAG 方面: 1. 没有用 Langchain 做 table 和 text 的 RAG: Table 表格:包括读入表格 markdown 格式嵌入 template 和直接使用 function call 两种方法。 Text 文字:包括文字相似度检索过程,涉及读入文字、清洗、切分、向量化、计算相似度等步骤。 2. 用 Langchain 做 table 和 text 的 RAG:包括运用 Agent 和 Chain 等方式。 3. 使用 Agent 把文本多种文档组合起来。 相关代码和示例可参考相应的链接。
2025-03-11
AI Agents的课程在哪里呢
以下是关于 AI Agents 课程的相关信息: 1. 在 AI 课程目录下新增了《》。 2. 同步更新到 1.8 版本,该图表由 E2b 团队制作。 3. 翻译了《》这篇文章,由 OpenAI 开发者关系负责人 Logan Kilpatrick 所写,介绍 Agents 是什么,这个领域的发展趋势,以及大量这种早期技术在实践中的精彩示例。 此外,如果您是新手学习 AI,还可以参考以下步骤: 1. 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 在通往 AGI 之路知识库中,还有关于 AI 相关技术与应用的介绍及活动分享: 1. AI agent 的介绍:大语言模型衍生出 AI agent,治理进阶可用此方式,如 GPTS、code、千帆百炼等,建议先吃透 prompt 再学习 AI agent,cost 平台有丰富教程和比赛,社区小伙伴参与能获奖。 2. AI 会话相关内容:通过关键词学设进行 AI 会话学习,如每日选词丢入稳定扩散模型,积累了大量提示词,建有飞书群供感兴趣的同学加入练习。 3. AI 视频相关词汇:收集了通过词汇控制 AI 视频的相关词典,如环绕、过曝、缩放等,更具象的描述词汇能让模型发挥更好效果。 4. AI 相关活动:包括 prompt battle、AI 神经大赛等,如 prompt battle 在每周六和周日晚上进行,有多种玩法,还有早晨的 PB 活动。
2025-01-13
Agents协作的系统架构图应该怎么画
以下是关于绘制 Agents 协作的系统架构图的一些参考信息: 首先,了解 Agent 的基本框架,即“Agent = LLM + 规划 + 记忆 + 工具使用”。其中大模型 LLM 扮演了 Agent 的“大脑”。 规划方面,主要包括子目标分解、反思与改进。子目标分解能将大型任务分解为较小可管理的子目标来处理复杂任务,反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 记忆分为短期记忆和长期记忆。短期记忆是将所有的上下文学习看成利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。 工具方面,不同的任务和场景需要选择合适的工具。 在生成式 AI 的人机协同中,分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,人与 AI 的协作流程有所差异。在 Agents 模式下,AI 完成大多数工作。 可以通过 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理角色,可将产品功能设计需求通过 Agents 拆解成多个独立的任务,然后遵循不同的工作流,最后生成一份大致符合期望的输出结果,再进行修改完善。 此外,还可以参考一些实例探究,如提示 LLM 提供 100 个最新观察结果,并根据这些观测/陈述生成 3 个最重要的高层次问题,然后让 LLM 回答这些问题。规划和反应时要考虑主体之间的关系以及一个主体对另一个主体的观察,环境信息以树形结构呈现。
2024-08-18
微信群聊机器人
微信群聊机器人的相关内容如下: 用 Coze 实现【多模态资讯的跨平台推送】的自研插件创建过程: 企业微信群聊机器人:包括四个不同插件,以发送文件的 sent_file_message 插件为例,需先到语聚 ai 的第三方 api 集成平台添加工具动作,在平台上测试相关动作获得返回的 API 请求的 python 代码,最后按步骤集成到 coze 的插件创建平台中。 飞书多维表格:使用 coze 在 Coze IDE 中创建模式创建插件,实现获取飞书特定表格最新记录特定字段的内容。要根据飞书开放者文档的要求在 coze IDE 平台中用 handler 的方式编写 python 代码,配置项目依赖,在 metadata 中配置输入和输入端信息,最后测试发布成功。 零基础模板化搭建 AI 微信聊天机器人: 纯 GPT 大模型能力的微信聊天机器人搭建的疑问解答:宝塔面板提供图形化管理界面,操作简单直观,有丰富在线资源,极简未来平台提供支持和详细操作指南,还可通过社群、论坛学习,定期备份和监控。遇到问题可查阅官方文档和教程、联系技术支持、加入技术社群、在在线论坛和社区寻求帮助。为避免忘记操作步骤,可制作操作手册、定期操作、录制视频教程、编写自动化脚本。 开始搭建:配置腾讯云轻量应用服务器,配置部署 COW 组件。在复制的 dockercompose.yml 文件中修改具体配置串联微信号和已创建好的 AI 机器人,参考官方来源 https://docs.linkai.tech/cow/quickstart/config 。配置参数中名称的全大写描述需对应编排模板,私聊或群聊交流时加上特定前缀触发机器人回复,如对应 SINGLE_CHAT_PREFIX,群组中对应 GROUP_CHAT_PREFIX,只有配置在 GROUP_NAME_WHITE_LIST 中的群组消息才会自动回复。
2025-03-30
怎么在飞书加入way to AGI的群聊?
在飞书加入 way to AGI 的群聊有以下几种方式: 1. 您可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 2. 您可以扫描。 3. 请填写下面问卷进群,群内会分享最新 AI 信息、社区活动。
2025-02-01
我想找微信群聊机器人
以下是关于微信群聊机器人的相关信息: 零基础模板化搭建 AI 微信聊天机器人: 宝塔面板提供了图形化的管理界面,操作简单直观,许多常见任务都可通过点击按钮完成。 丰富的在线资源:宝塔面板和 Docker 都有详细的官方文档和教程,您可随时查阅。 极简未来平台的支持:极简未来平台也提供了详细的操作指南和技术支持,遇到问题可以查阅官方文档或寻求帮助。 社群和论坛:加入相关的技术社群或论坛,向有经验的用户请教,也是一个很好的学习途径。 定期备份和监控:设置定期备份和监控,确保在出现问题时可以及时恢复。 若遇到问题,可采取以下方式解决:查阅官方文档和教程;联系技术支持;加入技术社群;在在线论坛和社区发布问题。 为避免长时间不操作后忘记步骤,可采取以下措施:制作操作手册;定期操作;录制操作视频;编写自动化脚本。 微信机器人大事件记录: QA 汇总表中问题都会在这里汇总,搭建遇到问题,可以先在这里看看: 群里有很多机器人,大家自行体验互帮互助,欢迎把自己建好的机器人拉到群里检测。一群已满,目前 2 群已满。加右侧微信拉你③群。如果群人数较多或二维码失效,需要手动拉人。 如果您也想体验或者制作,可以添加 WaytoAGI 共建者张梦飞同学微信,拉您进群。
2024-12-25
chatgpt-on-wechat 总结群聊插件
以下是关于 chatgptonwechat 总结群聊插件的相关信息: sum4all 插件: 本项目为大模型内容总结服务,有微信插件、telegram 机器人、iOS 快捷指令三个版本,其中微信插件需要自行部署,需配合 chatgptonwechat 项目。 支持联网搜索。 支持多轮追问。 支持文章链接总结,且支持发送到在线笔记。 支持文件内容总结,包括 pdf、docx、markdown、txt、xls、csv、html、ppt。 支持图片总结,包括 png、jpeg、jpg(最近好像不行,也可能是配置有误)。 支持视频、播客内容总结,包括抖音、b 站、小红书、YouTube 等。 支持多种内容总结服务,可自由组合。 支持自定义 prompt。 支持自定义搜索、追问提示词。 googleSearchOnWechat 插件: 插件介绍:通过 Google 搜索或图像搜索来获取信息,并利用 ChatGPT 对结果进行总结,以获得更精准和详细的答案。同时,搜图功能让用户能够通过在网络上搜索图片来增加可玩性。 git 地址:https://github.com/Yanyutin753/googleSearchOnWechat.git
2024-09-17
如何搭建飞书群聊机器人
搭建飞书群聊机器人可以参考以下步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 查阅官方文档和教程:极简未来平台、宝塔面板和 Docker 都有详细的官方文档和教程,可以帮助解决大部分问题。 联系技术支持:极简未来平台提供技术支持服务,可以联系平台的技术团队寻求帮助。 加入技术社群:加入相关的技术社群,向有经验的用户请教,获取问题的解决方案。 在线论坛和社区:在在线论坛和社区发布问题,寻求其他用户的帮助和建议。 为避免长时间不操作后忘记步骤,可以采取以下措施: 制作操作手册:将每一步的操作记录下来,制作成操作手册,方便日后查阅。 定期操作:定期登录服务器,进行简单的操作和维护,保持熟练度。 视频教程:可以录制自己的操作视频,作为教程,日后查看时更直观。 自动化脚本:对于一些常见的运维任务,可以编写自动化脚本,简化操作步骤。 配置腾讯云轻量应用服务器: 配置部署 COW 组件,例如配置 GROUP_NAME_WHITE_LIST 参数来确定哪些群组的消息需要自动回复。更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数记得根据要交互的群组进行具体修改),查看没问题后点击保存。 切换到容器编排界面,开始基于创建的模板进行真正的 COW 服务部署,点击添加后等待部署完成。 2. “机器人男友”搭建指引: 在 Github 上下载完整代码。 根据需求修改文件,必改的部分包括: 在 head.py 中找到填写主板串口的地方,把它改成串口地址。 查询 iPhone 的 IP 地址,填到 talk.py 里。 把 Open AI key 填到 talk.py 里。 可选修改的部分包括: 在 talk.py 里,可以修改 Openai 调用的 model、system prompt(机器人的人设)、机器人的音色、录音的设置。 在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。
2024-09-01