Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能发展的流程图上面有相关人物与重要时间节点或重大事件

Answer

以下是人工智能发展的流程图相关内容,包含重要人物与重要时间节点或重大事件:

二十世纪中叶,人工智能领域开启。最初符号推理流行,带来专家系统等重要进展,但因提取知识成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。

近现代,计算机科学发展为人工智能研究奠定基础,人们尝试用机器模拟人类思维。

1950 年,英国数学家阿兰·图灵提出著名的“图灵测试”。

1956 年,人工智能一词被提出,达特茅斯会议举行。

1997 年,深蓝在国际象棋比赛中击败卡斯帕罗夫。

2016 年,AlphaGo 在围棋比赛中战胜李世石。

2020 年,GPT-3 发布。

2022 年,DALL-E 发布。

2023 年,GPT-4 发布。

2024 年,预计发布 GPT-5 。

随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被用作“神经网络”的同义词。

Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

接下来,让我们加快点速度,将时间推移到近现代-20世纪40年代和50年代,其中计算机科学的发展为人工智能的研究奠定了基础。随着计算机技术的进步,人们开始尝试使用机器来模拟人类思维和解决问题的能力,并找到了人工智能的真正的机器载体。在近现代几十年中,人工智能发展迅猛,从1950年英国数学家阿兰·图灵(Alan Turing)提出了著名的“图灵测试”算起,到1956年的达特茅斯会议,从符号主义学派的专家系统到链接主义学派的感知机和神经网络,从深度学习的高速发展到当前的大语言模型的爆发式发展,在这短短几十年之间,人工智能发展经历的三起二落,以及技术突破所带来的阶段性不同程度的爆发。在快速发展的过程中,我们当然也无法遗忘在过程中众多巨人所为未来开创的具有重大意义的里程碑事件。在这里我试图列举几个我认为为当下人工智能发展带来重大意义的事件和技术:

当AI走进小学课堂(全套课程设计)

1956年人工智能被提出1997年深蓝击败卡斯帕罗夫2016年AlphaGo击败李世石2020年GPT-3的发布2022年DALL-E的发布2023年GPT-4的发布2024年即将发布GPT-5说明:这里未来可以改进一下,当时匆忙只写了语言模型和DALL-E,绘图的SD和Midjourney等我都没写进去,已经新出的视频和音乐创作工具等,都可以往上写,但也不用太多。只需要让孩子理解,技术的变革已经越来越快了!内容从图灵测试之后,科学家们就开始努力让机器变得更聪明。到了1956年,人工智能这个词首次被提出,从那时起,人们就开始正式研究如何让机器像人一样思考了。重大突破1997年:有一个叫做深蓝的电脑,在国际象棋比赛中战胜了世界冠军。这是第一次机器在这样的智力游戏中击败了顶尖的人类选手。2016年:有一个更聪明的AI叫AlphaGo,它在围棋比赛中战胜了世界冠军李世石。围棋是一个非常复杂的游戏,这次胜利让全世界都很惊讶。

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

Others are asking
AI绘制流程图
以下是使用 AI 绘制流程图的相关内容: 如果您需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 以下是一些其他可用于绘制流程图的 AI 工具: 1. Creately: 简介:Creately 是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可以自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网: 2. Whimsical: 简介:Whimsical 是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网: 3. Miro: 简介:Miro 是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网: 使用 AI 绘制示意图的一般步骤: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 需要注意的是,虽然 AI 可以帮助绘制流程图,但根据马斯克的成事五步法,第一步是质疑需求。画图的目的是加深理解,通过亲自动手画图来巩固印象。如果让 AI 画,可能会失去这个锻炼机会。而且,现在的 AI 也可能画不出好看的流程图,画出来的东西也可能难以修改。
2025-04-14
如何通过提交的pdf文件自动生成流程图。
目前在 AI 领域,直接通过提交的 PDF 文件自动生成流程图还存在一定的技术挑战。通常情况下,需要先将 PDF 文件中的内容进行解析和提取,然后利用专门的流程设计工具或软件来手动创建流程图。但随着技术的不断发展,未来可能会有更便捷和高效的方法来实现这一功能。
2025-04-13
可以自动生成流程图的网站
以下是一些可以自动生成流程图的网站: 1. :这是一个 Web 工具,采用可视化拖拽的方式生成流程图。优点是直观,缺点是需要花时间在布局上。 2. :注册登录后,可在模板库中搜索“项目管理流程图”,然后进行编辑、优化布局等操作,还能利用 AI 自动布局功能优化图表外观,最后保存和分享,或导出为 PDF、PNG 等格式。 3. 通过语法渲染成图形的方式,代表语法为。其优点包括只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,且不同渲染引擎可渲染成多种样式;缺点是有点抽象。 生成流程图的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑,生成 Mermaid 图形语法。 3. 在线校验测试是否成功。
2025-04-08
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
用文生图来画插画风格的系统流程图、概念图有哪些快速上手的prompt、平台和教程
以下是关于用文生图来画插画风格的系统流程图、概念图的快速上手的 prompt、平台和教程: 平台:Tusiart Prompt 提示词: 用英文写您想要 AI 生成的内容,不用管语法,仅使用单词和短语的组合去表达需求,单词、短语之间用英文半角逗号隔开。 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 教程: 1. 定主题:确定您需要生成的图的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:按照主题找内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:在生成内容基础上,寻找内容重叠的 lora 以控制图片效果及质量。 4. ControlNet:可控制图片中特定图像,如人物姿态、特定文字等,高阶技能可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. 负向提示词 Negative Prompt:用英文写您想要 AI 避免产生的内容,单词和短语组合,中间用英文半角逗号隔开。 8. 采样算法:一般选 DPM++2M Karras,也可留意 checkpoint 详情页上模型作者推荐的采样器。 9. 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 辅助网站: 1. http://www.atoolbox.net/ :通过选项卡方式快速填写关键词信息。 2. https://ai.dawnmark.cn/ :每种参数有缩略图参考,更直观选择提示词。 3. https://civitai.com/ :可抄作业,复制图片的详细参数用于生成。 下次作图时,可先选择模板,点击倒数第二个按钮快速输入标准提示词。
2025-03-28
如何用AI生成流程图
以下是几种使用 AI 生成流程图的方法: 1. 使用 Lucidchart 生成项目管理流程图: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. 使用 Midjourney 生成 B 端产品页面的流程图: 图片描述:把找到的设计参考图上传到 Midjourney 中,得到一个专属的链接,再使用「参考图链接+文本描述」的方式生成图像。 使用方法:例如想得到一个带有交互流程的 UI 界面图,先把找好的素材图上传到 Midjourney 中。在 Midjourney 中复制参考图的链接再加上文字提示,如「参考图链接+node UI」,就能得到和参考图很类似的设计图。如果想要纯正面、扁平效果的设计流程图,可以继续调整文字提示,如「参考图链接+flat UI,node UI,frontal」。如果想要手绘风格、黑白风格的交互设计图,在文字提示中加入「参考图链接+node UI,drawing style,frontal,black and white,flat UI,2D,no shadow」。 加入参数:Midjourney 生成的图默认是正方形,如果想得到其他比例的图,需要在文字描述中加入特定的参数来做到这一点,如「aspect」或「ar」。比例为 9:16 的设计图,使用提示「参考图链接+node UI,black and whitear 9:16」;或者 16:9 的图「参考图链接+node UI,ar 16:9」。 组件设计:Midjourney 的作用不同于设计软件,利用 AI 能在几秒钟内得到很有创造力的图像,这些设计图能为后面的设计提供更多灵感。除了生成整张的设计图,还可以扩宽思路,利用 AI 输出多种风格的设计组件,探索更多设计风格的可能性。例如,扁平组件系统的关键词:「UI kit,flat design,outline,ar 16:9」。 3. 使用 ChatGPT 生成各种流程图、时序图等: 确定制作目标:明确要生成的流程图类型,如时序图或流程图。 通过自然语法描述逻辑:用自然语言描述生成 Mermaid 图形语法。 在线校验测试是否成功:最后测试生成的图形是否符合预期。
2025-03-27
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
近期AI界有什么重大事件吗
以下是 2024 年 AI 界的一些重大事件: 1. 1 月:斯坦福大学 Mobile Aloha、LumaAl Genie 文生 3D、GPT store 上线、MagnificAl 高清放大爆火、苹果 Vision Pro 宣布发售等。 2. 10 月:9 月 27 日 Reecho 睿声●三只羊录音事件涉及 AI 公司出面回应;9 月 28 日 TeleAI●正式开源 TeleChat2115B;10 月 1 日快手●可灵 AI 全面开放 API、OpenAI DevDay;10 月 2 日 Black Forest Labs●发布 FLUX1.1、苹果●推出多模态大模型 MM1.5;10 月 3 日 OpenAI●发布 ChatGPT Canvas;10 月 8 日 2024 年诺贝尔物理学奖;10 月 9 日 2024 年诺贝尔化学奖;10 月 10 日字节●发布首款 AI 智能体耳机 Ola Friend、Vivo●增加蓝心端侧大模型 3B、谷歌●图像生成模型 Imagen 3 开放使用、智源●BGE 登顶 Hugging Face 月榜、State of AI 2024 报告发布;10 月 11 日智谱●GLM4Flash 与「沉浸式翻译」合作、北大&北邮&快手●?开源高清视频生成模型 Pyramid Flow;10 月 12 日 OpenAI●?开源多智能体协作框架 Swarm、深势科技●完成数亿元人民币新一轮融资、苹果●质疑当前 LLM 缺乏真正的逻辑推理能力;10 月 14 日。 3. 关于 AI 在未来一年的 10 个预测:一个主权国家向美国大型人工智能实验室投资 100 亿美元以上,需要国家安全审查;没有任何编码能力的人独自创建的应用程序或网站将会迅速走红(例如 App Store Top100);案件开始审理后,前沿实验室对数据收集实践实施有意义的改变;由于立法者担心权力过度,欧盟人工智能法案的早期实施最终比预期更为缓慢;OpenAl o1 的开源替代品在一系列推理基准测试中超越了它;挑战者未能对 NVIDIA 的市场地位造成任何重大打击;由于公司难以实现产品与市场的契合,对人形机器人的投资水平将会下降;苹果设备上研究的强劲成果加速了个人设备上 AI 的发展势头;人工智能科学家撰写的研究论文被大型机器学习会议或研讨会接受;一款以与 GenAI 元素交互为基础的视频游戏将取得突破性进展。
2025-01-17
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
有哪些节点式AI对话工具
以下是一些节点式 AI 对话工具: 1. Coze 中的问答节点: 是 Coze 工作流中的重要组件,能让机器人主动收集用户信息,实现更自然的对话交互。 可收集用户具体需求和信息,引导用户选择特定功能或服务,确保获取完整必要信息。 有两种问答方式:直接回答模式,用户用自然语言自由回答,bot 提取关键信息;选项回答模式,提供预设选项供用户选择,适用于功能选择菜单、分步骤引导、服务类型分类等。 配置说明包括选择执行此节点的模型、设置输入参数、提问内容、回答类型和输出等。 2. Coze 中的图像流节点: 专门用于图像处理,可通过可视化操作添加图像处理节点构建流程生成图像。 图像流发布后可在智能体或工作流中使用。 3. Coze 中的大模型节点: 调用大语言模型,使用变量和提示词生成回复。 模型方面,基础版和专业版按需使用,专业版支持接入更多模型资源。 模型选择右下角有生成多样性设置,包括精确模式、平衡模式和创意模式。 输入包括智能体对话历史、参数名与变量值,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-28
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
想在comfyui搭建一个音频节奏生成ai抽象粒子视觉效果的工作流,应该使用哪些模型节点?如何搭建?
在 ComfyUI 搭建音频节奏生成 AI 抽象粒子视觉效果的工作流,您可以参考以下内容: 1. 大模型节点: 您可以根据自己的风格选择不同的大模型,推荐使用: AWPainting,链接:https://civitai.com/models/84476/awpainting primemixanything,链接:https://civitai.com/models/75089/primemixanything xxmix9realistic v40,链接:https://civitai.com/models/47274/xxmix9realistic 2. 关键词节点: 可以使用工作流内的关键词,也可以输入自己的正负面关键词。 3. Lora 节点: 可根据自己风格搭配进行选择,如需多个 Lora 可进行串联。 4. ControlNet 节点: 选用 qrcode_monster V2 版本,相比于 V1 版本 V2 版本识别性更强。下载需要魔法,没有魔法的同学文末领取模型。下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 5. 采样器节点: 所有生图的老演员了,Step 要选择高步数,35 50 即可。采样器默认的 euler a /dpmpp 2m sde 基础节点介绍: 1. Checkpoint 基础模型(大模型/底模型)节点: 属于预调模型,决定了 AI 图片的主要风格。输出连接:Model 连接 KSampler 采样器的 Model;Clip 连接终止层数的 Clip;Vae 连接 VaeDecode 的 Vae。 2. Clip 终止层数(clip skip)节点: ComfyUI 的是负数的,webUI 的是正数。输出入点:Clip 连接 Checkpoint 基础模型的 Clip。输出节点:Clip 连接 Prompt 节点的 Clip。正向提示词和负面提示词各一个。 3. Prompt 节点: 输出入点:Clip 连接 Clip 终止层数节点的 Clip。输出节点:正向提示词和负面提示词各连接一个。 4. KSampler 采样器: 输出入点:Model 连接 Checkpoint 基础模型;Positive 连接正向提示词;negative 连接负面提示词;latent_imageL 连接 Empty Latent Image 潜空间图像的 Latent。输出节点:Latent 连接一个 VAE 的 Samples。 5. Empty Latent Image 潜空间图像: 设置出图尺寸,例如 10241024。输出入点:Latent 连接 KSampler 采样器的 Latent。 此外,还有一些根据插件整理的工作流,您可以先随便选择一个“文生图”中的“基础+自定 VAE”。选好之后,点击“替换节点树”。界面中就会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒您是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。
2025-03-15
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13