Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

心理学的对话ai如何建立

Answer

建立心理学的对话 AI 可以从以下几个方面考虑:

  1. 预期会有更多针对 AI 聊天机器人的专业甚至临床用例,例如 AI 驱动的心理治疗师、营养师、教练和导师,它们能为全球数百万消费者提供更经济便捷的个人和职业发展支持。用户只需打开应用程序即可提问或开始对话。
  2. 法学硕士越来越多地被用作对话式人工智能或聊天机器人的核心。与当前的对话技术相比,它们可能提供更高水平的对话理解和上下文感知。例如,Facebook 的 BlenderBot 专为对话而设计,可以与人类进行长时间对话,同时保持上下文。谷歌的 BERT 用于理解搜索查询,也是该公司 DialogFlow 聊天机器人引擎的组件。谷歌的 LaMBA 也是为对话而设计的。
  3. 但需要注意的是,这些法学硕士并不完美。它们接受过有关过去人类内容的训练,并且倾向于复制训练中接触到的任何种族主义、性别歧视或偏见语言。尽管创建这些系统的公司正在努力过滤仇恨言论,但尚未完全成功。

此外,一些最新的相关动态包括:微软和 OpenAI 计划建造“星际之门”AI 超级计算机,预计成本 1000 亿美元,旨在提供强大 AI 计算能力;OpenAI 发布语音生成模型 Voice Engine,可根据文本和 15 秒音频样本生成自然语音,支持情感丰富的声音生成、多语种和保留口音;Hume AI 发布情感感知语音 AI EVI,结合语言模型和表情测量技术,实现情绪感知对话,可感知细微情绪并作出响应,提升对话自然度。

Content generated by AI large model, please carefully verify (powered by aily)

References

生成式 AI:下一个消费者平台

我们还预期会看到更多针对AI聊天机器人的专业甚至临床用例。AI驱动的心理治疗师、营养师、教练和导师将使全球数百万消费者的个人和职业发展变得更加经济和便捷。这是一个始终可用的数字支持系统——用户只需打开一个应用程序,就可以提问或开始对话。

生成式人工智能如何改变创意工作

法学硕士越来越多地被用作对话式人工智能或聊天机器人的核心。与当前的对话技术相比,它们可能提供更高水平的对话理解和上下文感知。例如,Facebook的[BlenderBot](https://ai.facebook.com/blog/blenderbot-3-a-175b-parameter-publicly-available-chatbot-that-improves-its-skills-and-safety-over-time/)专为对话而设计,可以与人类进行长时间对话,同时保持上下文。谷歌的[BERT](https://cloud.google.com/ai-platform/training/docs/algorithms/bert-start)用于理解搜索查询,也是该公司DialogFlow聊天机器人引擎的组件。谷歌的LaMBA是另一个法学硕士,也是为对话而设计的,与它的对话让该公司的一位工程师相信它是一个[有感知的生物](https://slate.com/technology/2022/06/google-ai-sentience-lamda.html)——这是一项令人印象深刻的壮举,因为它只是根据过去的对话来预测对话中使用的单词。这些法学硕士都不是完美的健谈者。他们接受过有关过去人类内容的训练,并且倾向于复制他们在训练中接触到的任何种族主义、性别歧视或偏见语言。尽管创建这些系统的公司正在努力过滤仇恨言论,但尚未完全成功。

XiaoHu.AI日报

?微软和OpenAI计划建造“星际之门”AI超级计算机:预计成本1000亿美元,旨在提供强大AI计算能力。将建造数百万服务器芯片的数据中心。? https://theinformation.com/articles/microsoft-and-openai-plot-100-billion-stargate-ai-supercomputer? https://x.com/imxiaohu/status/1773909540935029025?s=208⃣️?️ OpenAI发布语音生成模型Voice Engine:根据文本和15秒音频样本生成自然语音。支持情感丰富的声音生成,多语种和保留口音。? https://openai.com/blog/navigating-the-challenges-and-opportunities-of-synthetic-voices? https://x.com/imxiaohu/status/1773896583006101720?s=209⃣️?️ Hume AI发布情感感知语音AI EVI:结合语言模型和表情测量技术,实现情绪感知对话。可感知细微情绪并作出响应,提升对话自然度。? https://x.com/imxiaohu/status/1773720014715257203?s=20

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
如何用coze实现一个心理学调研的智能体?最好能够支持音频调用
要使用 Coze 实现一个支持音频调用的心理学调研智能体,您可以按照以下步骤进行操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息。 3. 点击确认后完成工作流的新建,左侧「选择节点」模块中,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 在配置子任务节点时: 1. 关于模型选择,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。 2. 一般选择豆包·function call 32k。“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-12
心理学专业能对从事 AI行业提供哪些帮助?
心理学专业对从事 AI 行业有以下几方面的帮助: 1. 跨学科背景优势:多样化的学科背景,如心理学,能使从业者在 AI 与行业应用的结合上更具多样性。 2. 知识调用:在 AI 时代,需要了解各个领域的知识并在恰当的时候调用,心理学知识看似现在用不到,但很可能在未来某个时刻发挥巨大作用。 3. 拓展知识边界:对心理学等人文科学的广泛兴趣,展示出开放与包容的学习态度,有助于从多个角度拓展知识边界。 4. 学习机制研究:鉴于 AI 依赖的神经网络基础,心理学知识有助于研究 AI 的学习机制,如元学习,推动其更快地获得知识并进步。 5. 教育与指导:专家 AI 可能超越领域专家的角色,成为下一代专家(包括人类和 AI)的教师,心理学知识在教育和指导方面能发挥作用。
2024-12-01
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
如何建立知识库
以下是建立知识库的详细步骤: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库。 3. 给知识库起一个易于分辨的名字。 4. 点击添加文件,建议使用 Markdown 格式的文件。 5. 等待 Flowith 对文件进行抽取等处理。 6. 处理完毕后,可在知识库管理页面测试检索。 另外,还可以通过以下方式创建知识库并上传表格数据: 1. 在页面顶部进入知识库页面,单击创建知识库。 2. 在弹出的页面配置知识库名称、描述,单击确认(团队内知识库名称需唯一)。 3. 在单元页面,单击新增单元。 4. 在弹出的页面,选择表格格式,然后选择本地文件或 API 的方式完成数据上传。 在 Coze 中创建知识库: 1. 来到个人空间,找到知识库导航栏,点击创建知识库。 2. 选择知识库的格式(目前支持文档、表格、图片),填写相关信息。 3. 可选择本地文档、自定义的文档切割等。 4. 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-04-08
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30
如何建立个人知识库
建立个人知识库可以通过以下方式: 1. 利用 GPT 打造个人知识库: 使用 embeddings:将文本转换成向量,节省空间,可理解为索引。把大文本拆分成小文本块并转换为 embeddings 向量,保存在向量储存库中。当用户提问时,将问题转换为向量并与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings:embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 2. 本地部署大模型以及搭建个人知识库: 了解 RAG:利用大模型能力搭建知识库是 RAG 技术的应用。在大模型训练数据截止后,通过检索外部数据并在生成步骤中传递给 LLM。RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文本加载器:将用户提供的文本加载到内存中,便于后续处理。
2025-03-28
如何从0到1建立dify
从 0 到 1 建立 Dify 的步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 Dify 有以下两种使用方式: 1. 云服务版本。直接在官网 dify.ai 上注册账号使用。 2. 部署社区版。开源,可商用,但是不能作为多租户服务使用。对个人使用完全无限制。 部署前提条件:2 核 4G 云服务器一台(约 159 元)。 部署过程: 1. 参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。 2. 这些命令在宝塔面板的终端安装。 3. 检查运行情况,如遇到问题(如 80 端口被占用),按照 AI 的方法解决。 4. 在浏览器输入公网 IP 进入,邮箱密码随便填,建立知识库并设置。 5. 选择模型,如智谱 AI,获取钥匙并复制保存。 6. 创建应用并测试发布。
2025-03-24
如何建立自己的知识库
建立自己的知识库可以参考以下几种方法: 1. 使用 flowith 指南: 拆解创作任务:将复杂任务拆解到合适颗粒度,提供方法论和定义输出格式。 建立定向知识库:将相关元知识导入 flowith 的知识花园,转化为文字上传,打开智能拆分模式,形成知识“种子”。激活知识库后,AI 会根据创作场景自动匹配库内素材,还可发布或分享知识库。 2. 基于 GPT 打造: 搭建基于 GPT API 的定制化知识库涉及给 GPT 输入定制化知识,但 GPT3.5 免费版交互容量有限。 理解 embeddings:embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 3. 用 Coze 免费打造微信 AI 机器人: 设计 AI 机器人,确定功能范围。 创建知识库:整理“关键字”与“AI 相关资料链接”的对应关系,支持多种文档类型,如本地文档、在线数据、飞书文档、Notion 等,可使用特殊分割符如“”便于自动切分数据。
2025-03-20