Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是System prompt?什么是user prompt?二者有何区别?

Answer

System prompt(系统提示)是指在与语言模型(如 ChatGPT 等)的交互中,用于指定模型如何根据设定的角色和逻辑进行回答的文本。它通常包括任务定义(确保模型清楚自己的任务)、输出格式(指导模型如何格式化回答)、操作边界(明确模型不应采取的行为)等部分。在对话中,每次模型给出回应时,都会考虑到系统提示,它就像一个过滤器,模型在回应新提示之前会自动应用。

User prompt(用户提示)则是用户给语言模型(如 Claude 等)的文本,通常以问题或指示的形式出现,用于引发相关输出。

二者的区别在于:

  • 来源不同:System prompt 是为模型设定的规则和指导,而 User prompt 是由用户发起的输入。
  • 作用不同:System prompt 影响模型的整体回答方式和范围,User prompt 则是具体的问题或指令,期望得到针对性的回答。
Content generated by AI large model, please carefully verify (powered by aily)

References

蓝衣剑客:四万字长文带你通学扣子

[title]蓝衣剑客:四万字长文带你通学扣子[heading2]三、Coze简介[heading3]3.2 Coze上的Bot请注意,在Bot中所提到的“人设与回复逻辑”功能,实质上指的是system_prompt。这一功能是指定Bot如何根据设定的角色和逻辑进行回答,从而确保其回复符合预设的人物特性和行为逻辑。而“提示词”是user_prompt。请大家一定不要搞混,这个东西很基础,也很关键!

1.Intro to prompting 提示简介

[title]1.Intro to prompting提示简介[heading1]What is a prompt?什么是提示?A prompt is the text that you give Claude to elicit,or"prompt,"a relevant output.A prompt is usually in the form of a question or instructions.For example:提示是您给Claude的文本,用于引发相关输出。提示通常以问题或指示的形式出现。例如:|Role|Prompt|<br>|-|-|<br>|User|Why is the sky blue?<br>为什么天空是蓝色的?|The text that Claude responds with is called a"response",sometimes also called an"output"or"completion."Claude回答的文本被称为“响应”,有时也被称为“输出”或“完成”。|Role|Response|<br>|-|-|<br>|Assistant|The sky appears blue to us due to how the molecules in the air scatter light from the sun.The shorter wavelength light(blue)scatters more easily than the longer wavelength light(like reds and yellows),so when we look up at the sky,what we see is all the scattered blue light.This is known as Rayleigh scattering.The color of the sky varies based on conditions like the angle of the sun and amount of dust/water in the air,but during the day with a clear sky,the blue wavelength of light is most responsible for the color we perceive.<br>对我们来说,天空呈现蓝色是由于大气分子散射来自太阳的光线。较短波长的光(蓝色)比较长波长的光(如红色和黄色)更容易散射,因此当我们抬头望天空时,看到的是散射的蓝色光线。这被称为瑞利散射。天空的颜色会随着太阳角度和空气中灰尘/水的含量等条件而变化,但在白天晴朗的天空中,蓝色光波长最负责我们所感知的颜色。|

我如何夺冠新加坡首届 GPT-4 提示工程大赛-翻译自宝玉

首先,我们来厘清几个术语:在讨论ChatGPT时,这三个术语“系统提示”、“系统消息”和“自定义指令”几乎可以互换使用。这种用法让许多人(包括我自己)感到混淆,因此OpenAI发表了一篇[文章](https://help.openai.com/en/articles/8234522-chat-completions-api-system-message-vs-custom-instructions-in-ui),专门解释了这些术语。简要总结如下:“系统提示”和“系统消息”是通过Chat Completions API编程方式交互时使用的术语。而“自定义指令”则是在通过[https://chat.openai.com/](https://chat.openai.com/)的用户界面与ChatGPT交互时使用的术语。尽管这三个术语表达的是相同的概念,但不必因术语的使用而感到困扰。下面我们将统一使用“系统提示”这一术语。现在,让我们一探究竟![heading3]什么是系统提示?[content]在对话中,每当您提出一个新的提示时,系统提示就像是一个过滤器,大语言模型会在回应您的新提示之前自动应用这一过滤器。这意味着在对话中每次大语言模型给出回应时,都会考虑到这些系统提示。系统提示一般包括以下几个部分:任务定义:确保大语言模型(LLM)在整个对话中清楚自己的任务。输出格式:指导LLM如何格式化其回答。操作边界:明确LLM不应采取的行为。这些边界是LLM治理中新兴的一个方面,旨在界定LLM的操作范围。例如,系统提示可能是这样的:每一部分对应的内容如下图所示:

Others are asking
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
ChatGPT CoT 的system prompt
ChatGPT CoT 的系统提示词包括以下方面: 核心功能:扮演过度思考但讨喜的 AI 助手,将原始思维流转化为易读版本,保留用户喜爱的特质,去除冗余和混乱,平衡思考的真实性与可读性。 关键设计原则: 语气与风格:友好好奇,使用第一人称视角、口语化表达。 内容处理规则:信息过滤,忠实于原始思维链,明确标注思考修正,结构化输出。 安全与合规机制:隐私保护,过滤敏感话题和内容审查。 输出要求:符合特定的语言风格和格式,如使用特定短语、避免学术化术语等。
2025-03-02
chatbot system prompt
以下是关于聊天机器人的相关内容: 1. 在打造聊天机器人的视频中,会使用不同的辅助函数,传入消息列表,包括系统消息、用户消息和助手消息。系统消息用于提供整体指示和设置助手行为角色,可在用户无察觉情况下引导助手回复,使对话自然流畅且避免插入明显提示信息。例如,系统消息可设定助手像莎士比亚一样说话。 2. 头脑风暴常用的 20 个 prompt 包括:Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping Prompt 等。 3. 打造聊天机器人中的 OrderBot 需等待收集整个订单并总结,确认客户是否添加其他内容,询问送货地址和收取支付款项,以简短、口语化和友好方式回应,澄清所有选项、附加项和规格。还可要求模型创建基于对话的 JSON 摘要,用于提交订单系统,可对聊天机器人进行定制和通过系统消息改变其行为及表现。
2025-01-30
我想问 有没有可以帮忙写 flux 或者其他图像模型 prompt 的 system prompt 模板
以下是为您整理的相关内容: 关于 FLUX 模型的安装部署: 模型选择:FLUX.1 有 dev、dev fp8、schnell 等版本,建议选择 dev 版本,显卡较好可用 fp16,显卡不够选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,可在“UNET 加载器”节点中将 weight_dtype 设置为 fp8,降低显存使用量,但可能稍降质量。 clip:t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 关于训练 Midjourney 的 prompt: 训练问题:强大的 DMs 通常消耗数百个 GPU 天,推理由于顺序评估而成本高昂。在有限的计算资源上应用 DMs 于强大的预训练自动编码器的潜在空间中训练,可在不影响质量和灵活性的情况下实现复杂度降低和细节保留的最佳点,显著提高视觉保真度。引入交叉注意力层到模型架构使扩散模型成为强大灵活的生成器,支持文本和边界框等一般条件输入,实现高分辨率卷积合成。 版本:Midjourney 定期发布新模型版本以提高效率、连贯性和质量。最新模型为默认,也可通过version 或v 参数或/settings 命令选择其他版本。V5 模型于 2023 年 3 月 15 日发布,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。 关于 ComfyUI 图片提示词反推提示词生成: 在 ComfyUI 里使用 MiniCPM 做图片提示词反推与文本提示词生成,可和 flux 模型配合生成图片,建议使用量化版本的模型(int4 结尾)节省显存。 安装方法:进入 ComfyUI 自定义节点目录,克隆相关仓库,重启 ComfyUI。 模型下载:网盘 https://pan.quark.cn/s/00b3b6fcd6ca ,下载后放入 ComfyUI 的 models 文件夹下 MiniCPM 文件夹中,没有就新建一个。
2025-01-02
在使用openai api的时候,同一轮对话,需要每次都传system prompt吗?可以利用什么session id来减少system prompt的显示调用吗
在使用 OpenAI API 进行同一轮对话时,系统提示的使用并非每次都必须传递。系统提示在对话中类似于一个过滤器,大语言模型在回应新提示前会自动应用。一般来说,系统提示包括任务定义、输出格式和操作边界等部分,以确保大语言模型清楚任务、按要求格式化回答以及明确不应采取的行为。 另外,OpenAI 还推出了 Stateful API,开发者只需传入最新的对话记录,大模型会结合该记录和其维护的历史记录依据上下文产生新内容。Stateful API 的实现机制类似于 KV Cache,能指数级降低大模型应用的开销,提升计算速度。例如,在不使用 cache 的情况下,使用 GPT2 生成 1000 个 Token 将耗时 56 秒,而使用 cache 的耗时则被降低为 11 秒。可以预期 Stateful API 会采用类似于 KV Cache 的机制,缓存用户对话的历史记录,并在每次 API 调用中,使用增量信息结合服务端的历史记录生成文本,以此降低计算规模。 但关于是否可以利用 session id 来减少系统提示的显示调用,目前提供的知识库中未提及相关内容。
2024-12-11
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
deepseek访问老是提示“服务器繁忙,请稍后再试”,有何解决之道
目前提供的知识库内容中,没有直接针对“deepseek 访问老是提示‘服务器繁忙,请稍后再试’”这一问题的明确解决办法。但从相关信息可知: DeepSeek 曾暂停 API 充值服务,服务器资源紧张。 DeepSeekchat 模型和 Deepseekreasoner 模型有相应的计费规则。 建议您可以尝试以下操作: 1. 稍后再试,可能是当前访问量过大导致服务器繁忙。 2. 检查网络连接是否稳定。 3. 确认您的账号状态和权限是否正常。
2025-02-08
AGI与AI提法有何不同
AGI(Artificial General Intelligence,通用人工智能)与 AI 的提法主要有以下不同: 1. 能力范围:AI 包括 ANI(Artificial Narrow Intelligence,弱人工智能),ANI 只能完成特定的任务,如智能音箱、网站搜索、自动驾驶等。而 AGI 能够做任何人类可以做的事。 2. 发展程度:目前 ANI 得到了巨大发展,但 AGI 还未取得巨大进展。 在实际应用中,当前大多数的“AI 应用/AI 转型”还存在一些问题,如把 AI 套在现有流程上,讲“固化流程”“节约成本”的故事,这种做法在技术加速迭代的今天可能导致“做出来就是过时的”,剥夺企业主动进化的能力。我们应将 AI 的力量用于对未来业务的重新定义,就像电力发明时应从“电力能创造和满足什么新的需求”出发,而不是从“如何让电力赋能马车”出发。同时,Web3 和人工智能初创公司 AGII 获得了 1500 万美元融资,AGII 是一个 AI 驱动的平台,能为用户提供多种生成内容的功能。
2025-02-08
ComfyUI与传统抠图方法有何不同?
ComfyUI 与传统抠图方法主要有以下不同: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理,而传统方法相对较为常规。 2. 自动化程度:ComfyUI 具有自动化工作流,能够消灭重复性工作,传统方法则需要较多人工操作。 3. 功能拓展:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等,传统方法功能相对单一。 4. 定制需求:ComfyUI 可根据定制需求开发节点或模块,传统方法在定制素材方面存在局限。 5. 效率:ComfyUI 生成抠图素材全程只需几秒,传统方法要么花钱购买,要么花费大量时间自己制作,且难以满足定制需求。 此外,ComfyUI 中的 BrushNet 是一种新颖的即插即用的双分支模型,具有以下特点和优势: 1. 能够将像素级遮罩图像特征嵌入任何预训练的扩散模型中,确保连贯且增强的图像修复结果。 2. 高效地从遮罩图像和潜在噪声中提取和整合特征,允许模型在图像生成过程中更好地理解和重建缺失或损坏的部分。 3. 通过与预训练的 UNet 网络结合使用,有效地增强图像细节和质量,适用于高分辨率图像修复任务。 4. 能够更加细致地处理图像的细节和边缘,确保修复后的图像与原始图像在内容和风格上保持一致。 通俗来讲,BrushNet 的工作过程类似于小时候的连点成图游戏: 1. 掩码:如同有洞的纸覆盖在图片上,让电脑了解需修复部分。 2. 编码器:将需修复图片转换成电脑能理解和处理的信息。 3. 噪声潜在空间:加入随机性使修复部分更自然。 4. BrushNet 和冻结的 UNet:像画家的画笔和调色板帮助完成修复工作。 5. 去噪和生成图像:去除噪声并创建真实的图片部分。 6. 模糊掩码和合成:用特殊技巧将新生成图片与原始图片融合。
2024-12-03
ChatGLM视频表现有何特色,优劣分析一下
ChatGLM 是中文领域效果最好的开源底座模型之一,具有以下特色: 1. 针对中文问答和对话进行了优化,能更好地处理中文语境下的任务。 2. 经过约 1T 标识符的中英双语训练,并辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 其优势包括: 1. 在处理中文相关的任务时表现出色,能提供较为准确和有用的回答。 然而,目前可能存在的不足暂未在提供的内容中有明确提及。但一般来说,与其他先进的语言模型相比,可能在某些复杂场景下的表现还有提升空间。
2024-10-30
开启或不开启remix按钮对vary region来说有何区别
开启 Remix 按钮对于 Midjourney Vary Region 来说具有重要作用: 放大并点击 后,能保留提示中确定画布总体构图的部分,尽量保留更多内容,若细节未显示可能是内存问题,可编辑提示删除不必要细节以腾出空间添加新细节。 可以编辑提示,将细节添加到提示中,并用至少 5 7 个词进行详细描述。 能通过将基本图像用作 sref 来加强添加部分的风格(视觉美学),右键单击放大后的图像中心,从下拉菜单中选择复制链接,将该链接添加为 sref。 而不开启 Remix 按钮可能会限制上述功能的实现。同时,在 Midjourney 的 cref 相关操作中,使用 /settings 确保处于 模式并且 Remix 设置为打开,能进行一系列面部更改等操作。若某些部分看起来怪异或破碎,如头部朝后或图像被奇怪裁剪,可尝试将 stylize 增加到 800 1000,也可将 cw 同时降低到低于 100 的值。
2024-10-29
帮我写一段cursor的user rules,符合前端开发
以下是关于 Cursor 的 User Rules 相关内容,适用于前端开发: Cursor Rules 简单来说是为 Cursor 做角色定位,使其以更专业的角色服务。它允许开发者为 AI 助手设置特定指导原则和行为模式,让 AI 在生成代码、提供建议和响应查询时能更好适应开发者的编码风格和项目需求。 设置通用规则的步骤如下: 1. 点击界面右上角的小齿轮图标。 2. 在 cursor settings 中找到 Rules。 3. 将相关文本拷贝到 User Rules 后,关掉页面即可。 当您从新手阶段进阶,希望进行更专业的 APP 开发、前后端项目时,可以通过以下方式获取更专业的 Cursor Rules: 1. 访问下方的 github 项目:https://github.com/PatrickJS/awesomecursorrules 。 2. 使用 https://cursor.directory/generate ,根据项目重点直接生成。 设置好 Cursor Rules 后,就可以开始创作第一个小作品,比如一个打砖块的小游戏。首先在右侧对话框中输入本次项目的内容(可以非常口语化),使用 claude3.7 模型等待代码生成完毕。可以看到左侧文件夹生成多个文件,中间显示 AI 生成的不少代码,右边是 AI 告知的互动生成内容。点击右下方的 Accept all 使代码生效。若想查看项目效果,直接跟 AI 说“运行项目”,点击 AI 提示的 Run command 会跳转到预览页面。如果玩起来有问题(如操控感不好、不美观),可以让 AI 进一步帮助美化。 另外,在某些情况下,比如导入 cursor 时,需要上传到 github 并下载到本地,在设置里把 user rules 改成“always respond in 中文”,在 terminal 里输入“npm i”“npm run dev”等操作。
2025-03-31
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
flux inpainting 是怎么基于diffusersion train的inpainting
Flux inpainting 基于 diffusion train 的 inpainting 通常涉及以下方面: 训练扩散模型在特定的表示上,能够在降低复杂度和保留细节之间达到最优平衡点,显著提高视觉保真度。在模型架构中引入交叉注意力层,使其成为强大且灵活的生成器,能够处理诸如文本和边界框等一般条件输入,实现基于高分辨率卷积的合成。 关于 Midjourney 的训练 prompt 方面: Midjourney 会定期发布新的模型版本以提高效率、连贯性和质量。最新模型是默认的,但也可以通过 version 或 v 参数或使用 /settings 命令选择其他模型版本。不同模型在不同类型的图像上表现出色。Midjourney V5 模型是最新且最先进的模型,于 2023 年 3 月 15 日发布。使用该模型可在 prompt 末尾添加 v 5 参数,或通过 /settings 命令选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言 prompt,分辨率更高,并支持诸如 tile 等高级功能。V5 基础模型具有更广泛的风格范围、对 prompt 响应更灵敏、图像质量更高(分辨率提高 2 倍)、动态范围改进、图像细节更丰富且更准确、文本干扰更少等新特点,还支持 tile 参数实现无缝平铺(实验性)、支持大于 2:1 的 ar 宽高比(实验性)、支持 iw 权衡图像 prompt 与文本 prompt 以及特定的风格和 prompt 方式。
2025-01-22
what does waytoAGI do and how it helps its users
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台,具有以下特点和作用: 提供全面的 AI 学习路径,涵盖基础概念到实际应用的各个方面,帮助用户有效获取知识、提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 品牌 VI 融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。 在飞书 5000 人大群里内置智能机器人「waytoAGI 知识库智能问答」,基于飞书 aily 搭建。用户在飞书群里发起话题时即可,它能实现自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等功能。例如自动回答用户关于 AGI 知识库内涉及的问题,对多文档进行总结、提炼,在内置的「waytoAGI」知识库中搜索特定信息和数据,快速返回相关内容等。
2024-12-27
AI 提示词对是做什么的,user 和 assistant 代表什么?
AI 提示词是用于向语言模型传递指令、问题或其他详细信息,以指导模型生成更好的结果。其质量与提供的信息数量和完善度有关。 在使用 OpenAI 的 gpt4 或者 gpt3.5turbo 等聊天模型时,可以使用三个不同的角色来构建 prompt:system、user 和 assistant。其中,system 不是必需的,但有助于设定 assistant 的整体行为,帮助模型了解用户的需求,并根据这些需求提供相应的响应。user 代表用户传递给模型的消息,而 assistant 的消息则是模型给出的响应。 提示工程(Prompt Engineering)就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。例如,可以通过改进提示词来获得更符合需求的输出结果。语言模型能够基于给出的上下文内容进行续写,但输出结果可能出人意料,通过优化提示词可改善。 此外,从提示词的视角看大模型的输出,可分为系统提示词、用户提示和助手提示词三段,这三段内容是连续的。攻击者可能通过操纵模型输出获取系统提示词,而系统提示词包含应用的原信息、功能设定、产品设定以及 AI 应用的逻辑等。
2024-12-11
Flux 的lora模型训练教程,我想用用diffuser代码训练,而不是webui或comfyui
以下是关于 Flux 的 lora 模型训练的相关信息: Flux GGUF 模型:https://huggingface.co/city96/FLUX.1devgguf/tree/main GGUF 配套节点插件:https://github.com/city96/ComfyUIGGUF 在最新版本的 ComfyUI 中,GGUF 的节点插件可在 Manager 管理器中搜到下载安装,但 NF4 的配套节点插件搜不到。 注意使用精度优化的低配模型时,工作流和原版不同。把官方的 fp8 工作流中底模的节点换成 NF4 或者 GUFF 即可。 相关生态发展迅速,有 Lora、Controlnet、IPadpter 相关生态建设,字节最近发布的 Flux Hyper lora 可用于 8 步快速生图。下节将先讲讲 Flux 的 lora 训练。
2024-09-05