Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何教小朋友学人工智能

Answer

以下是关于教小朋友学人工智能的一些建议:

对于低年级小学生: 首先,要让他们理解创造人工智能模型就像给它一个会思考的“大脑”。科学家通过“机器学习”的方法,让计算机观察大量东西并找出规律来学会解决问题,这和小朋友在学校通过练习变得越来越好是类似的。Genie 模型通过看很多网络视频来学习,尽管没有特别标签,但它能自己理解和记住。Genie 模型有很大的数字网络即“模型参数”,就像巨大的钢琴,每个琴键代表一种知识。科学家还利用“生成模型”技术让 Genie 模型不仅能复制看到的东西,还能想象创造新的东西,比如根据要求创造出草原的图片,甚至创造出可以互动的虚拟世界。

对于中学生:

  1. 从编程语言入手学习,例如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。
  2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验应用场景,也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题。
  5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。

使用 AI 做事获取信息和学习东西: 最佳免费选项是必应(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx),付费选项通常也是必应较好。对于儿童,可汗学院的 Khanmigo(https://www.khanacademy.org/khan-labs)提供由 GPT-4 驱动的良好的人工智能驱动辅导。但使用人工智能作为搜索引擎要谨慎,因为存在幻觉风险,不过在某些特定情况下,如技术支持、决定吃饭地点或获取建议,必应可能比谷歌更好。这是一个迅速发展的领域,使用时要小心。

Content generated by AI large model, please carefully verify (powered by aily)

References

面向低年级小学生的Genie模型 科普文章

[title]面向低年级小学生的Genie模型科普文章首先,要创造出Genie模型,科学家们需要给它一个大脑,这个大脑就是我们常说的“人工智能”。你们知道人工智能吗?它就像是一个机器人的思考方式,能让机器人像人一样思考和学习。科学家们用了一种特别的方法,叫做“机器学习”,来教会这个大脑思考。机器学习就是让计算机观察很多很多的东⻄,然后从中找出规律,慢慢学会自己解决问题。你们上学的时候,老师会给你们很多问题,让你们练习,最后你们就会做得越来越好,对吗?Genie模型学习的方式也差不多,只不过它学习的东⻄是视频。科学家们给Genie模型看了很多网络上的视频,尽管这些视频没有特别的标签告诉Genie模型里面有什么,但Genie模型通过自己的学习,能够慢慢理解视频中发生的事情,并且记住了。Genie模型有一个非常大的数字网络,我们可以叫它“模型参数”。想象一下,就像是一个巨大的钢琴,每个琴键都代表一种知识。Genie模型有大约110亿个这样的琴键,所以它知道的东⻄非常非常多。接下来,科学家们需要让Genie模型更加聪明,让它不仅能看懂视频,还能创造出新的东⻄。所以,他们利用了一种叫做“生成模型”的技术。这种技术可以让Genie模型不仅仅复制它所看到的东⻄,还可以自己想象出新的东⻄来。就好比给了它一个画笔,它可以根据你告诉它的话题来画出全新的画面。比如说,如果你对Genie模型说:“我想看看一个大草原。”即使Genie模型以前没有看过真正的大草原,它也可以想象出一个草原的样子,并且创造出一个草原的图片给你看。这就是它的创造能力。而且,Genie模型还可以做到更神奇的事情:它能创造出可以互动的虚拟世界。这意味着,它不仅仅给你展示一个图片,还可以让你在这个虚拟世界

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

[title]问:中学生如何开始学习AI,有哪些好用的工具或者平台?我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

如何使用 AI 来做事:一份带有观点的指南

[title]如何使用AI来做事:一份带有观点的指南[heading1]获取信息和学习东西最佳免费选项:[必应](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx)付费选项:通常必应是最好的。对于儿童,来自可汗学院的[Khanmigo](https://www.khanacademy.org/khan-labs)提供由GPT-4驱动的良好的人工智能驱动辅导。如果您打算使用人工智能作为搜索引擎,可能不要这样做。幻觉的风险很高,无论如何,大多数人工智能都没有连接到互联网(这就是为什么我建议你使用必应。Bard,谷歌的人工智能,产生了更多的幻觉)。然而,[根据最近的一项试点研究](https://arxiv.org/abs/2307.01135),有一些证据表明,如果仔细使用,人工智能通常可以提供比搜索更有用的答案。特别是在搜索引擎不是很好的情况下,[如技术支持、决定在哪里吃饭或获得建议](https://twitter.com/emollick/status/1643718474668097538?s=20),必应通常比谷歌更好。这是一个正在迅速发展的领域,但您现在应该小心这些用途。[你不想惹麻烦。](https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html)

Others are asking
想开发一套针对小学生的AI寒假训练营,教一些简单的代码之类的 你可以给我推荐一些让小朋友体验的AI工具吗
目前针对小学生的 AI 工具,以下几种可能较为适合他们体验: 1. Scratch:这是一款图形化编程工具,通过拖拽积木块的方式就能创建程序,非常直观易懂,有助于培养孩子的逻辑思维和创造力。 2. Code.org:提供了丰富的编程课程和项目,包括简单的代码编写,界面友好,适合初学者。 3. Tynker:具有趣味性的编程学习平台,有很多小游戏和项目可以让孩子在玩中学习编程知识。 需要注意的是,在让小朋友使用这些工具时,要给予适当的指导和监督,确保他们能够正确理解和使用。
2025-01-11
小朋友绘画作品怎么生成动画视频
以下是几种将小朋友绘画作品生成动画视频的方法: 1. 使用 Pika: 打开 Discord,点击邀请链接加入 Pika 的生成视频频道:https://discord.gg/pika 。 选择作画频道,输入“/”+指令,如“/create”为文字生成视频指令,“/animate”为图片生成视频指令,“/encrypt_image”为图片+文字生成视频指令。 选择“/create”,输入想要的内容描述即可生成视频;选择“/animate”,输入想要的图片(不能添加其他文字要求描述)或在“message”处输入图片,并在“prompt”处添加描述。 Pika 的常用指令参数包括:“gs xx”(引导比例,较高的值使其与文本更相关,推荐范围为 8 24)、“neg xxx”(负面提示,指定在视频中不希望出现的内容)、“ar xx:xx”(宽高比,例如 16:9、9:16、1:1、4:5)、“seed xxx”(生成过程中增加一致性的种子数)、“motion xx”(所需运动强度,仅支持 0/1/2)、“fps xx”(视频的帧率)。 2. ComfyUI Flux 与 runway 制作: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD 。 绘制视频:在 runway 里面,使用提示词,告诉从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,controlNet 使用的是 Union 的版本,不建议权重调得太高,结束时间也是。 生成上色后的视频。 3. 动态叙事动画生成器: Prompt 解析器处理:解析输入的 Prompt,提取关键信息,如主要人物、场景、活动以及时间线索。 分镜生成器处理:根据提取的信息生成分镜脚本,每个季节一个分镜,包含具体的背景、人物动作和情感状态。 视频渲染引擎处理:将分镜脚本转换为视频帧,并渲染成连贯的视频动画,使用 AnimateDiff 框架生成每一帧的图像,确保人物动作的连贯性和场景的平滑过渡,对每个季节的场景应用不同的色调和光影效果,添加适当的背景音乐和声音效果。 用户交互界面处理:用户在界面中输入 Prompt,并可以选择视频的风格、分辨率等参数,预览系统生成的视频片段,并根据需要进行调整,满意后下载最终的视频文件。
2025-01-09
我如何给小朋友介绍AIGC
小朋友们,今天我们来了解一下很有趣的 AIGC 哦! AIGC 就是利用特别厉害的人工智能技术来生成各种各样内容的一种方式。它能通过学习很多很多的数据,按照我们给的要求生成内容。 AIGC 可以生成好多东西呢,比如文字,像故事、文章、对话;还能生成好看的图片、有趣的视频。 AIGC 跟其他生成内容的方式不太一样,比如 UGC 是由像你们这样的用户自己生成的内容,像在社交媒体上发的照片、文章。PGC 呢,则是由专业的叔叔阿姨们生成的高质量内容,像新闻报道、影视作品。 AIGC 里面还有很多相关的技术名词哦。AI 就是人工智能,它能像我们的大脑一样思考。机器学习是电脑自己找规律学习,有监督学习、无监督学习和强化学习。监督学习是有标签的训练数据,无监督学习是自己发现规律,强化学习就像训练小狗一样从反馈里学习。深度学习是一种参照人脑的方法,有神经网络和神经元。生成式 AI 能生成文本、图片、音频、视频等。 2017 年 6 月,谷歌团队发表了一篇很重要的论文,提出了 Transformer 模型,它处理数据可厉害了,比其他的模型更能处理长距离的文本。 小朋友们,现在是不是对 AIGC 有一点了解啦?
2024-11-15
小朋友应该如何开展学习编程和AI
对于小朋友开展学习编程和 AI,以下是一些建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向小朋友的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果希望在编程方面继续精进,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2024-10-19
有一个小朋友的私人教练微信群,个人手机中存储的微信聊天历史,如何提取成ai可以使用的知识库包含时间线,语音,图片视频。
目前要将个人手机中存储的包含时间线、语音、图片、视频的小朋友私人教练微信群聊天历史提取成 AI 可以使用的知识库,存在一定的技术难度。 对于文字聊天记录,可通过手动整理或使用一些第三方工具进行导出和整理。但对于语音、图片和视频,AI 直接处理和理解这些内容的能力有限。 语音需要先进行语音转文字的处理,这可能需要借助专门的语音转文字软件,且转换的准确性可能受到语音质量、口音等因素的影响。 图片和视频的内容提取则更为复杂,需要使用图像识别和视频分析技术,将其中的关键信息提取出来并转化为文字描述,但这种转化的准确性和完整性难以保证。 总的来说,要实现您的需求,需要综合运用多种技术和工具,并且可能无法达到完美的效果。
2024-08-08
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10