Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

sora模型不同于其他同类模型的优势

Answer

Sora 模型不同于其他同类模型的优势主要体现在以下几个方面:

  1. 视频生成能力:能够根据文本提示生成长达 1 分钟的高质量视频,而早期模型通常只能生成短视频片段。生成的长视频具有高视觉质量和引人入胜的视觉连贯性,从第一帧到最后一帧有良好的视觉一致性。
  2. 处理复杂指令:展示了准确解释和执行复杂人类指令的显著能力,能生成包含多个执行特定动作的角色以及复杂背景的详细场景。
  3. 数据预处理:能够在原始尺寸上训练、理解和生成视频及图像,拥抱视觉数据的多样性,在从宽屏 1920x1080p 视频到竖屏 1080x1920p 视频以及之间的任何格式上采样,而不会损害原始尺寸。在原始尺寸上训练数据显著改善了生成视频的构图和框架,实现更自然和连贯的视觉叙事。
  4. 符合规模化定律:作为大型视觉模型,符合规模化原则,揭示了文本到视频生成中的几种新兴能力,是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。此外,还展示了包括遵循指令、视觉提示工程和视频理解等显著能力。
Content generated by AI large model, please carefully verify (powered by aily)

References

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

[title]Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】[heading1]1引言自从2022年11月ChatGPT发布以来,人工智能技术的出现标志着一个重大的转变,重塑了交互方式,并深入融入日常生活和行业的各个方面[1,2]。基于这一势头,OpenAI在2024年2月发布了Sora,一个文本到视频的生成式AI模型,能够根据文本提示生成现实或想象场景的视频。与之前的视频生成模型相比,Sora的特点是能够在遵循用户文本指令的同时,生成长达1分钟的高质量视频[3]。Sora的进步体现了长期以来人工智能研究任务的实质,即赋予AI系统(或AI代理)理解和与运动中的物理世界互动的能力。这涉及到开发不仅能解释复杂用户指令,而且能将这种理解应用于通过动态和富有上下文的模拟解决现实世界问题的AI模型。图2:Sora在文本到视频生成中的示例。文本指令被给予OpenAI Sora模型,它根据指令生成三个视频。Sora展示了准确解释和执行复杂人类指令的显著能力,如图2所示。该模型能生成包含多个执行特定动作的角色以及复杂背景的详细场景。研究人员将Sora的熟练程度归因于不仅处理用户生成的文本提示,而且还能辨别场景内元素之间复杂的相互作用。Sora最引人注目的方面之一是其生成长达一分钟的视频的能力,同时保持高视觉质量和引人入胜的视觉连贯性。与只能生成短视频片段的早期模型不同,Sora的一分钟长视频创作具有进展感和从第一帧到最后一帧的视觉一致性之旅。此外,Sora的进步在于其生成具有细腻运动和互动描绘的扩展视频序列的能力,克服了早期视频生成模型所特有的短片段和简单视觉呈现的限制。这一能力代表了AI驱动创意工具向前的一大步,允许用户将文本叙述转换为丰富的视觉故事。总的来说,这些进步展示了Sora作为世界模拟器的潜力,为描绘场景的物理和上下文动态提供了细腻的见解。[3]。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

[title]Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】[heading1]3技术[heading2]3.2数据预处理[heading3]3.2.1变化的持续时间、分辨率、宽高比Sora的一个区别特征是其能够在原始尺寸上训练、理解和生成视频及图像,如图5所示。传统方法通常会调整视频的大小、裁剪或调整宽高比,以适应一个统一标准——通常是以固定低分辨率的正方形帧的短片段[27][28][29]。这些样本通常在更宽的时间跨度上生成,并依赖于分别训练的帧插入和分辨率渲染模型作为最后一步,这在视频中造成了不一致性。利用扩散变换器架构[4](见3.2.4节),Sora是第一个拥抱视觉数据多样性的模型,并且可以在从宽屏1920x1080p视频到竖屏1080x1920p视频以及之间的任何格式上采样,而不会损害它们的原始尺寸。图5:Sora可以生成从1920x1080p到1080x1920p及其间任何尺寸或分辨率的图像。图6:Sora(右)与一个修改版的模型(左)之间的比较,后者将视频裁剪成正方形——这是模型训练中的一种常见做法——凸显了优势。在原始尺寸上训练数据显著改善了生成视频的构图和框架。经验发现,通过保持原始宽高比,Sora实现了更自然和连贯的视觉叙事。如图6所示,Sora与一个在统一裁剪的正方形视频上训练的模型之间的比较展示了明显的优势。Sora生成的视频展示了更好的框架,确保场景中完全捕捉到了主体,与正方形裁剪导致的有时被截断的视图相反。

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

视觉模型的规模化定律。有了LLMs的规模化定律,自然会问视觉模型的发展是否遵循类似的规模化定律。最近,Zhai等人[24]展示了,有足够训练数据的ViT模型的性能-计算前沿大致遵循(饱和)幂律。继他们之后,谷歌研究[25]提出了一种高效稳定训练22B参数ViT的方法。结果显示,使用冻结模型产生嵌入,然后在顶部训练薄层可以实现出色的性能。Sora作为一个大型视觉模型(LVM),符合这些规模化原则,揭示了文本到视频生成中的几种新兴能力。这一重大进展强调了LVMs实现类似LLMs所见进步的潜力。新兴能力。LLMs中的新兴能力是在某些规模上——通常与模型参数的大小有关——表现出的复杂行为或功能,这些行为或功能并未被开发者明确编程或预期。这些能力被称为“新兴”,因为它们源于模型在多样化数据集上的全面训练,以及其庞大的参数数量。这种组合使模型能够形成联系并做出超越简单模式识别或死记硬背的推断。通常,这些能力的出现不能通过从小规模模型的性能外推来直接预测。虽然许多LLMs,如ChatGPT和GPT-4,展示了新兴能力,但直到Sora的出现,展示类似能力的视觉模型还很少。根据Sora的技术报告,它是第一个展示确认新兴能力的视觉模型,标志着计算机视觉领域的一个重要里程碑。除了其新兴能力,Sora还展示了其他显著能力,包括遵循指令、视觉提示工程和视频理解。Sora的这些功能方面代表了视觉领域的重大进步,并将在后续部分进行探讨和讨论。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
sorabot怎么样
Sora 是 OpenAI 在 2024 年 2 月发布的文本到视频生成的 AI 模型。 其具有以下特点和相关情况: 足够惊艳,但关键问题仍需探讨。Sora 团队未明确表示已实现基于成熟的世界因果关系模型,而是用了世界模拟器的描述。顶尖学术圈对此较为严谨,Lecun 在世界政府峰会上不看好 Sora,指出其并非真正的世界模型,且仍会面临 GPT4 的巨大瓶颈。 自 ChatGPT 发布以来,人工智能技术标志着重大转变。Sora 能根据文本提示生成长达 1 分钟的高质量视频,具有准确解释和执行复杂人类指令的能力,能生成包含多个角色及复杂背景的详细场景,保持高视觉质量和视觉连贯性,克服了早期视频生成模型的一些限制,展示了作为世界模拟器的潜力。 基于公开的技术报告和逆向工程,有对其背景、技术、应用、挑战和未来方向的全面综述。涵盖了追溯发展、探究底层技术、描述在多行业中的应用和潜在影响、讨论主要挑战和局限性,以及对未来发展的探讨。
2025-03-20
sora现在能生成多长时间视频
Sora 是由 OpenAI 开发的文生视频模型,能够根据文字指令创造出逼真且充满想象力的场景,并生成长达 1 分钟的高质量视频,且具有一镜到底的特点,视频中的人物和背景能保持惊人的一致性和稳定性。与之前的视频生成模型相比,Sora 在生成时长和视频质量上有显著进步。同时,还有其他一些文字生成视频的 AI 产品,如 Pika 擅长动画制作且支持视频编辑,SVD 是基于 Stable Diffusion 的插件,Runway 是老牌的收费 AI 视频生成工具且提供实时涂抹修改视频功能,Kaiber 是视频转视频 AI,能将原视频转换成各种风格的视频。更多相关网站可查看:https://www.waytoagi.com/category/38 。
2025-01-15
如何使用sora生成一段视频
使用 Sora 生成一段视频的步骤如下: 1. 文本提示优化:类似于 DALLE3,Sora 在处理用户提供的文本提示时,可以利用 GPT 模型来扩展或优化提示。GPT 模型能将简短的用户提示转化为更详细、更富有描述性的文本,有助于 Sora 更准确地理解并生成符合用户意图的视频。 2. 生成视频:用户提供文本提示,Sora 根据提示在潜在空间中初始化视频的生成过程。利用训练好的扩散模型,Sora 从这些初始化的时空潜伏斑块开始,逐步生成清晰的视频内容。 3. 视频解码和后处理:使用与视频压缩相对应的解码器将潜在空间中的视频转换回原始像素视频。对生成的视频进行可能的后处理,如调整分辨率、裁剪等,以满足发布或展示的需求。 此外,Sora 采用了一些相关技术和原理: 1. 视频压缩网络:训练一个降低视觉数据维度的网络,接受原始视频作为输入,并输出在时间和空间上都被压缩的潜在表示。Sora 在这个压缩的潜在空间上进行训练,并随后生成视频。同时还训练了一个相应的解码器模型,将生成的潜在表示映射回像素空间。 2. 时空潜空间块:给定一个压缩的输入视频,提取一序列的时空分块作为 Transformer 变换器的 Token。这个方案也适用于图像,基于分块的表示使 Sora 能够训练具有不同分辨率、持续时间和纵横比的视频和图像。在推理时,可以通过在适当大小的网格中随机初始化分块来控制生成视频的大小。 3. 调整图像模型来生成视频:通过插入时间层来“扩增”预训练的文生图扩散模型,然后选择仅在视频上对新的层进行微调或完全避免进行额外的训练。新模型会继承文本 图像对的先验知识,有助于缓解对文本 视频对数据的需求。 4. 扩散视频建模:如 Singer et al. 在 2022 年提出的 MakeAVideo,在一个预训练扩散图像模型的基础上扩展一个时间维度,包含三个关键组件:一个在文本 图像对数据上训练的基础文生图模型;时空卷积和注意力层,使网络覆盖时间维度;一个帧插值网络,用于高帧率生成。
2025-01-10
sora和lora是什么
LoRA(LowRank Adaptation)是一种低阶自适应模型,您可以将其理解为基础模型(Checkpoint)的小插件。在生图时,LoRA可有可无,但它具有明显的价值,常见于对一些精细的控制,如面部、材质、物品等细节的控制。其权重在相关界面会有显示。 Sora 并非常见的 AI 领域特定术语,上述知识库中未提及相关内容。
2025-01-02
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
sora教程
以下是关于 Sora 及相关的教程信息: AI 视频方面: 软件教程: 工具教程: 应用教程: Python + AI 方面: 对于不会代码的人,有 20 分钟上手的教程,包括通过 OpenAI 的 API 生成文章缩略信息的代码重写及相关操作步骤。同时提醒妥善保管 API Key,OpenAI 的综合文档、API 使用、API Playground、API 案例与答疑的相关网址为:https://platform.openai.com/docs/overview 、https://platform.openai.com/docs/apireference 、https://platform.openai.com/playground 、https://cookbook.openai.com/ 。 工具教程: 开放公测,群友有实测案例。可参考卡兹克的教程介绍:https://mp.weixin.qq.com/s/YGEnIzfYA3xGpT9_qh56RA 以及 zho 总结的官方网站的案例。目前除每日 150 个赠送积分外,还新增积分购买选项,可操作固定种子、步数、运动幅度,交互也很有意思,在生成过程中会有案例标注。 此外,还有几个视频 AIGC 工具:Opusclip 可将长视频剪成短视频,Raskai 能将短视频素材直接翻译至多语种,invideoAI 输入想法后可自动生成脚本和分镜描述进而生成视频再人工二编合成长视频,descript 可对屏幕/播客录制并以 PPT 方式做视频,veed.io 能自动翻译自动字幕,clipchamp 是微软的 AI 版剪映,typeframes 类似 invideoAI 但内容呈现文本主体比重更多,google vids 是一款相关工具。Sora 是 OpenAI 发布的超强视频生成 AI,能通过处理各种视觉数据生成视频,使用视频压缩网络和空间时间补丁统一不同来源数据,并借助文本条件化的 Diffusion 模型生成与文本提示匹配的视觉作品。
2024-12-17
有没有与pika.art 同类的产品
以下是与 pika.art 同类的产品: 1. Dora AI:使用一次 prompt 借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 2. Bard(免费):谷歌推出的官方 ChatGPT 竞争者,由谷歌的对话应用语言模型(LaMDA)提供支持。 3. Chat.DID(免费):有史以来首个允许人们以人类方式与 AI 进行视频聊天的 APP,正在将“面孔”重新带回界面,现已进入测试阶段。
2024-10-30