Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么ai对思路分解做的比较好

Answer

以下几种 AI 在思路分解方面具有一定的优势和特点:

  1. 专家 AI:鉴于其神经网络基础,可能通过元学习更快地获得知识。通过构建系统深入探索其内部工作机制,能创造学习的飞轮,未来甚至可能成为下一代专家的教师,帮助我们将复杂问题一部分一部分地拆解研究。
  2. ChatGPT:在某些实用向话题,如写代码、解数学题等方面表现相对稳定,能够为解决问题提供一定的思路。
  3. 大语言模型:可以加速认知提升,指导学习。人类可以利用其培养结构化思维,将复杂问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决,从而达到解决整体问题的目的。

需要注意的是,不同的 AI 在不同的场景和任务中表现各异,具体的效果还需根据实际需求和使用情况来评估。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

[title]为了在医疗保健中产生真正的改变,AI需要像我们一样学习鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

健康:这个比 ChatGPT 情商还高的 AI,我可以和它聊三天三夜

[title]健康:这个比ChatGPT情商还高的AI,我可以和它聊三天三夜[heading1]这或许是情商最高的AI所以,虽然Pi总是鼓励你、肯定你,以问句结尾让你继续说下去,擅长给你思路而不是答案,但有时它的回复和引导方式完全在意料之中,让人失去了谈话的兴致,不痛不痒的Pi式鸡汤尤其令人敬谢不敏。另外,Pi并非对写代码、解数学题等实用向话题一窍不通,只是发挥不如ChatGPT稳定,甚至戏台没搭好就已戏瘾大发。我让Pi帮我用Java实现一个冒泡排序,它先介绍了什么是冒泡排序,问我跟不跟得上它的思路,我冷漠回应直接给出示例就好,然后让ChatGPT点评Pi的生成结果。ChatGPT表示,这段代码实现了冒泡排序算法的核心思想,但存在一个可能的错误。至于数学能力,我考了Pi七八道入门水平的题,有时它压根不回答,说自己不会做算数和解方程式,甚至开始转移话题,有时它又能答出来,或者接受挑战却答错了,状态飘忽不定。类似地,写论文提纲之类的事最好也交给ChatGPT。简而言之,Pi对自己的认知很清楚:擅长引导话题、同理心强的聊天伙伴,主打你来我往的交互感。在MBTI体系下,如果不幸有个i人扎堆的房间,它应该是那个把场子炒热的e人。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

[title]智变时代/全面理解机器智能与生成式AI加速的新工业革命[heading1]05选择-成长与投资[heading3]5.2自我提升但这也不意味着不用再培养基础认知了,我们可以利用大语言模型来加速认知的提升,用它们来指导学习,让生物大脑和机器智能一同进化,这样我们才有更多的时间来做高阶思维的锻炼,例如计划,评估,决策、抽象和创造,从而培养出达到更高理解水平所需的直觉。。要知道过去没有高阶认知我们没有任何代价,现在的代价是非创造级别的工作,对人类来说即将失去经济价值,因为AI的自动化会做得更好。提问与思考在许多事情都被自动化的情况下,什么是值得学习的呢?首先,学会提问,未来的教育应侧重于如何提出有价值的问题,而不仅仅是回答问题。好的思考才能带来好的问题,批判性思维和好奇心是思考的前提,也是人类文明能够向前的动力。其次,学会广泛而深入地思考——尽可能多地吸收各种知识和思维模式,重点培养结构化思维。调将复杂的问题分解成更小、更易管理的部分,并通过逻辑和有条理的步骤来解决这些部分,从而达到解决整体问题的目的。我们在上一章就提到了,目前AI模型都在练习如何根据长期目标来分解和执行计划,从而提升自己的智能,人类不是更应该这样吗?不然如何去评估和验证AI的执行结果呢?利用自然语言来表达和整理思维,形成清晰的“人类级别”叙述;所以AI不会减少编程的需求,而是让人人都能编程,这是通过算法和逻辑来解决问题的一种思维模式,可以帮助我们更好地结构化思考。通过广泛而深入的思考,我们才能定义真正对我们有价值的东西。成为超级个体

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
用coze分解短视频分镜
以下是关于用 Coze 分解短视频分镜的详细内容: 一、Coze 智能体创建 1. “开始”节点 共有 4 个输入变量,分别为: idea_txt:主题观点 left_to_txt:画面左上角的文字 right_to_txt:画面右上角的文字 img_prmpot:画面中间图片生成提示词 注意:这 4 个变量名称要和智能体中提示词的变量对应一致,方便接收用户传入的参数。 2. “大模型”节点 使用目前大家公认的 DeepSeek R1 模型。 提示词要求不复杂,只要说出需求即可,格式可用大白话说出来。 3. “文本”节点 为了将文案分句,每一句要生图、配音。 选择按“句号”分句,具体可根据文案格式选择不同方式。 4. “图像生成”节点 使用官方插件,模型选“LOGO 设计”。 若要生成全景图,此插件效果欠佳,建议选其它插件。 5. “抠图节点” 将上个节点生成的图片进行抠图。 二、概述 基于其他博主开源的视频生成工作流,做了一些功能优化,实现视频全自动创建。感谢开源的力量,现写一篇教程供大家参考。 三、先看效果 四、功能 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 五、涉及工具 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 六、大体路径 1. 通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 Coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。
2025-02-23
模态分解算法的详细代码
很抱歉,目前知识库中没有模态分解算法的详细代码。但您可以通过以下途径获取相关代码: 1. 学术研究网站,如 arXiv 等,许多学者会在上面分享他们的研究成果及代码。 2. 相关的开源代码库,如 GitHub 等,您可以通过搜索关键词找到相关项目。 3. 专业的技术论坛,在那里与其他开发者交流,可能会获得有用的信息和代码示例。
2024-12-30
(defun 生成记忆卡片 (单词) "生成单词记忆卡片的主函数" (let* ((词根 (分解词根 单词)) (联想 (mapcar #'词根联想 词根)) (故事 (创造生动故事 联想)) (视觉 (设计SVG卡片 单词 词根 故事))) (输出卡片 单词 词根 故事 视觉))) (defun 设计SVG卡片 (单词 词根 故事) "创建SVG记忆卡片" (design_rule "合理使用负空间,整体排版要有呼
以下是关于生成记忆卡片和 SVG 卡片的相关信息: 卡片类的应用被定义为词生卡片,如李继刚的《汉语新解》、一泽的《名片设计》、云中江树的《AI 简历》等,都是通过给大模型优化过的 Prompt,让其生成 HTML 代码或 SVG 代码,再通过浏览器渲染效果。 把提示词丢给 Claude ,如在 Poe 平台上的 Claude 模型,大概率会直接输出 SVG 代码,但对于子步骤是否执行等情况难以知晓。Andrej Karpathy 认为,模型需要 tokens 来思考,如果大语言模型未将思考过程外化,则几乎等于没思考。 甲木介绍了让 Claude 生成古诗词卡片的方法,流程包括输入 Prompt 、用户输入主题和风格,AI 输出最终结果。获取提示词已开源,创作过程主要是根据给定主题和方向生成匹配的中国古诗词,创建设计感强烈、富有中国传统美学的 SVG 卡片展示诗词,并提供相关信息,还支持根据用户提供的主题和方向生成对应语境的 prompt 并配图生成 SVGCard 。但对于“逼格高”的看法因人而异,可将选择权交给 AI 。
2024-11-28
可将复杂任务分解为简单子任务的ai工具是什么
以下是一些可将复杂任务分解为简单子任务的 AI 工具和相关策略: OpenAI 官方指南中提到,对于需要大量独立指令集来处理不同情况的任务,可以首先对查询类型进行分类,并使用该分类来确定需要的指令。例如,在客户服务应用程序中,将查询分类为计费、技术支持、账户管理或一般查询等主要类别,并进一步细分次要类别。 如同软件工程中将复杂系统分解为模块化组件,对 GPT 提交的任务也可如此。复杂任务往往可被重新定义为一系列简单任务的工作流程,早期任务的输出用于构造后续任务的输入。 在 AIAgent 系列中,基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力以及对工具的理解。
2024-11-05
将复杂任务分解为简单子任务以简化问题,这样的ai工具都有什么
以下是一些可将复杂任务分解为简单子任务以简化问题的 AI 工具和相关策略: 1. OpenAI 官方指南中提到的策略: 使用意图分类来识别与用户查询最相关的指令。 对于需要很长对话的对话应用程序,总结或过滤之前的对话。 分段总结长文档,并递归构建完整总结。 指示模型在急于得出结论之前先自己找出解决方案。 使用内心独白或一系列查询来隐藏模型的推理过程。 询问模型在之前的回答中是否遗漏了什么。 使用基于嵌入的搜索来实现高效的知识检索。 使用代码执行来进行更准确的计算或调用外部 API。 2. 在 AIAgent 系列中: 基于 LLM 的 AI Agent 应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于 LLM 的推理和规划能力,当然也包括对工具的理解。
2024-11-05
有没有关于工作任务分解为具体步骤的提示词
以下是关于将工作任务分解为具体步骤的提示词相关内容: 提示词工程的任务可分解为两个步骤,如 Pryzant 等人(2023)所做:第一步,模型预期检查当前提示词和一批样本;第二步,模型预期编写一个改进的提示词。 对于复杂任务,可将其分解成更小的步骤,并在提示词中明确每个步骤的具体操作,引导模型逐步完成任务。例如,使用以下逐步说明:步骤 1 用户将提供用三重引号引用的文本。用一个句子总结这段文本,并以“摘要:”作为前缀。步骤 2 将步骤 1 的摘要翻译成西班牙语,前缀为“翻译:”。 如果将任务分解,Claude 在执行任务时犯错或遗漏关键步骤的可能性会降低。 为了鼓励模型仔细检查批次中的每个示例,并反思当前提示词的局限性,可指导提案模型回答一系列问题,如输出是否正确、提示词是否正确描述了任务、是否有必要编辑提示词等。 实际操作中,提示词插入整个输入序列的位置是灵活的,可能位于输入文本之前用于描述任务,也可能出现在输入文本之后以激发推理能力。在元提示词中应明确提示词和输入之间的相互作用。
2024-10-21
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
二次元与ai有什么结合变现的思路
以下是二次元与 AI 结合变现的一些思路: 1. 以 API 形式链接 Zion 和 Coze,为 dify、kimi 等大模型和智能体制作收费前端。您可以参考相关教程,如: 2. 自定义配置变现模版的 UI 交互、API、数据库等拓展功能,支持在 Zion 内自由修改,可参考文档配置。相关链接如下: 支付: Actionflow: 权限: 代码组件: 3. 微信小程序变现模版正在开发中,不久将会上线。目前实现小程序端可以通过 API 形式搭建。 4. Zion 支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 在摊位信息方面,有以下与二次元和 AI 结合的示例: 1. 乐易科学院:通过 AI 的技术,结合量子、暗物质、天体运行规律等能量形式,从科学、物理学、天文学、心理学等方面讲解国学和传统文化。可以通过技术方式批八字、调风水、进行性格色彩分析,让每个人找到方向,成为更好的自己。摊位区域为 C,编号 27,类型为玄学+科学。 2. AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发,摊位区域为 C,编号 76,类型为游戏宣传。 3. AI 人像摄影绘画,摊位区域为 C,编号 77,类型为照片。 4. 主题是:B2B AI 营销与 AI 落地项目快速落地,涵盖 3 个方向: AI 训练 to b,出应用,智能体 agent,文生图生视频都涉及。 美国独立站搭建,工作流给模特戴上珠宝饰品。 Google seo 与 AI 结合。 在 AI 原画设计方面,Niji·journey 5 是一款在二次元领域表现出色的绘画 AI 工具。二次元作品具有较高的规律性,角色、场景和物品往往有明显的风格特征和设计规律,AI 能够更容易地从海量训练数据中学习和总结这些规律。同时,二次元角色设计更注重创意和审美,而非真实世界的物理规律,这使得 AI 在设计过程中可以专注于发挥其“想象力”和“创造力”。
2025-03-24
ai绘画提示词思路和模板
以下是关于 AI 绘画提示词的思路和模板的相关内容: 提示词模板的相关网站: 1. Majinai: 2. 词图: 3. Black Lily: 4. Danbooru 标签超市: 5. 魔咒百科词典: 6. AI 词汇加速器: 7. NovelAI 魔导书: 8. 鳖哲法典: 9. Danbooru tag: 10. AIBooru: 描述逻辑: 通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 辅助工具和方法: 1. 利用相关功能型辅助网站,如 http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 2. 参考 https://ai.dawnmark.cn/,其每种参数有缩略图可参考,更直观选择提示词。 3. 去 C 站(https://civitai.com/)抄作业,每张图有详细参数,可复制粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词,如人物描写、背景描述、小元素或画面质感等。 在制作游戏 PV 时的应用: 1. 在故事背景创作阶段,结合 chatGPT 发散制作游戏背景世界观,针对话术改进故事,筛选满意的故事框架内容优化。 2. 引导 ChatGPT 用分镜形式描述。 3. 使用 new bing 共创的故事分镜。 4. 利用 ChatGPt 制作 midjourney 提示词工具,使用生动感性术语和具体细节描述场景,告知 MJ 格式后进入 midjourney 绘图,包括制作 logo。 5. 统一 MJ 风格描述词,建立 AI 描述词模板,根据不同内容更换(如视角、景别、情绪词、画面色调),生成不同画面,提高效率和统一性。 下次作图时,可先选择模板,点击倒数第二个按钮快速输入标准提示词,查看加入标准提示词后的效果。
2025-03-22
RAG的优化思路
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 LLM 需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在黑盒不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在学不会的风险。 2. 数据库的数据更新敏捷,可解释且不影响原有知识。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在优化 RAG 性能方面,对于向量化基本平权的情况,可引入来源机制进行改进,对向量化的数据进行综合评分,如相似度置信度等,然后再进行 rebank。特别是对于私有化数据,业务方清楚数据的置信度,有优化空间。
2025-03-18
关于使用deepseek的创业思路有什么
以下是一些关于使用 DeepSeek 的创业思路: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计阈值系统,后续根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不稳定)。 用户对 DeepSeek 的使用场景包括但不限于: 1. 脑爆活动方案。 2. 生成会议纪要和方案,稍加修改即可呈现高质量的会议总结。 3. 本地搭建超级 AI 助手。 4. 与飞书结合批量处理客户评论。 5. 分析总结复盘内容。 6. 生成专业专用软件详细使用过程。 7. 写课程方案、做产品最小 MVP、做创业想法梳理。 8. 检索资料搜索。 9. 编程,推荐装机硬件。 10. 写小说大纲和细纲,系统查资料,评估买车等。 11. 做雷达算法框架、自媒体公众号文章。 12. 批处理,完成原型设计,产品深度思考,勾画 MVP 关键点,评估。 13. 做项目工作。 14. 教小朋友学英语。 15. 学习量化交易。 16. AI 咨询,为企业赋能。 17. 自动提醒团队形成。 18. 结合飞书多维表格+DeepSeek 搭建创业软件小助手,一句话生成软件落地方案。 19. 解决数学建模的解题思路。 20. 问诊推荐感冒中成药。
2025-02-26
写论文,AI写的部分比较多,如何降低AIGC呢?
以下是一些降低论文中 AIGC 比例的方法和常用的 AIGC 论文检测网站: 降低 AIGC 比例的方法:需要您更多地进行自主思考、研究和创作,减少对 AI 生成内容的依赖。 AIGC 论文检测网站: Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法为上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 这些工具和网站可以帮助教育机构、研究人员和编辑识别 AI 生成的内容,确保学术和出版的原创性和诚信。您可以根据具体需求选择适合的工具来进行检测。
2025-04-13
现在比较好用的AI硬件工具推荐一下,比如鼠标,眼镜,耳机啥的
以下是为您推荐的一些 AI 硬件工具: 1. 对于将 Raspberry Pi 连接到其他设备的配件,您可以参考: 防止过热的散热器 MicroUSB 转 USB 适配器,用于 Logitech 键盘的无线传感器 用于显示器的 MiniHDMI 转 HDMI 适配器 键盘和鼠标:推荐 2. 在可穿戴方面,以 GenAI 硬件为例,Meta 雷朋眼镜是具有代表性的产品。您还可以查看 GenAI 硬件榜单获取更多信息,比如: ,该榜单包含多个分类,数据来源包括 google、tiktok、twitter、亚马逊等。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
将照片改成卡通效果用什么ai会比较简单易操作
以下几种 AI 工具可以将照片改成卡通效果,操作相对简单易操作: 1. ChatGPT 4o:支持上传照片后直接生成“吉卜力卡通风格”图像,提示词只需简单写“吉卜力风格化”即可,后续会话中只需上传图片,无需重复输入提示词。参考链接:
2025-04-08
用什么ai写论文比较好
在论文写作领域,AI 技术的应用发展迅速,能在多方面提供辅助。以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮您精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合了自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时,有消息称 Sakana AI 用 AI Scientistv2 模型生成的论文通过 ICLR 2025 双盲评审,但他们主动撤回论文,呼吁学术界先制定 AI 论文规范。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
你有知道那些做AI比较厉害的培训课程
以下是一些比较厉害的 AI 培训课程: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 由白马老师和麦菊老师带领的 AI 星图及相关创作课程,包括毛毡字、光影字、机甲字等。 16 号晚上中老师会带领的炼丹操作课程,炼丹需提前准备一些图,老师会提前发布内容让大家准备。 关于 AI 文旅视频的课程,几位老师带来了干货课程,工作流开源,学习后可制作类似视频。 高效 PB 及相关案例课程,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动的新的 AI 视频主题课程。 AI 音乐相关课程,有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 以下是一些其他的课程资源: 一位投资人推荐的课程: MIT Deep Learning: Stanford CS 324Advances in Foundational Models: The Full Stack LLM Bootcamp: 野菩萨的课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果想要免费获得野菩萨的课程,可以来参与 video battle,每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-04-01