Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果我希望搜索尽可能全部的含有相关搜索词的论文并提取其特定信息呢

Answer

目前知识库中没有关于如何搜索尽可能全部的含有相关搜索词的论文并提取其特定信息的内容。但一般来说,您可以通过以下几种方式来尝试:

  1. 利用专业的学术数据库,如 Web of Science、Scopus 等,设置精确的搜索词和筛选条件。
  2. 尝试使用多个不同的学术搜索引擎,以扩大搜索范围。
  3. 运用高级搜索技巧,例如布尔逻辑运算符(AND、OR、NOT)来优化搜索词组合。
  4. 对于提取特定信息,可以先确定所需信息的类型和特征,然后借助相关的文献管理工具或数据挖掘软件来辅助处理。
Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
图片提取文字
以下是关于图片提取文字的相关信息: 大模型招投标文件关键数据提取方案:输入模块设计用于处理各种格式的文档输入,包括 PDF、Word、Excel、网页等,转换成可解析的结构化文本。多种文件格式支持,对于图片,可以借助 OCR 工具进行文本提取,如开放平台工具:。网页可以使用网页爬虫工具抓取网页中的文本和表格数据。 谷歌 Gemini 多模态提示词培训课:多模态技术可以从图像中提取文本,使从表情包或文档扫描中提取文本成为可能。还能理解图像或视频中发生的事情,识别物体、场景,甚至情绪。 0 基础手搓 AI 拍立得:实现工作流包括上传输入图片、理解图片信息并提取图片中的文本内容信息、场景提示词优化/图像风格化处理、返回文本/图像结果。零代码版本选择 Coze 平台,主要步骤包括上传图片将本地图片转换为在线 OSS 存储的 URL 以便调用,以及插件封装将图片理解大模型和图片 OCR 封装为工作流插件。
2025-04-15
文章风格提取
以下是关于文章风格提取的相关内容: 该提示词用于抽取不同风格文章的核心要素,抽取到的字段可作为 prompt,结合指定主题进行风格迁移。整体创作思路见文末 PDF。 具体使用方法为:拷贝文章风格提取提示词,输入给任意大模型,随后提供要抽取的文本。 已抽取的一些风格参考包括万维钢风格、史铁生《我与地坛》文风、李娟《我的阿勒泰》文风、许倬云《说中国》文风、鲁迅《狂人日记》文风、王小波《万寿寺》文风、飞书多维表格工作流自动化抽取等。 使用 DeepSeek V3 进行实验时,智能体地址为 https://www.coze.cn/s/VM9pUn9HdmA/ 。初级使用方法是输入公众号文章标题或内容,智能体会自动提取相关信息,默认风格是“炫彩”。高级使用方法需按照要求输入几个要素,如标题、副标题、分享封面、标签、风格等。
2025-04-11
有没有提取小红书内容的AI
以下是为您找到的关于提取小红书内容的 AI 相关信息: 有一款名为“小红书文案专家”的 AI 工具,其功能价值在于:见过多个爆款文案,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可一键复制发布的初稿,提供创意和内容,10 倍节约文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 一期产品功能: 1. 可以提取任何链接中的标题和内容。 2. 按照小红书平台文案风格,重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级中,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向,输出文案和配图。
2025-04-09
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
文章提取器
以下是关于文章提取器的相关内容: Yeadon 提出了利用 Cursor+Coze 工作流打造网页内容提取插件的方法。Cursor 是具有 AI 功能的革新性代码编辑器,Coze 工作流是可视化的组合工具。该插件的功能需求包括对当前网页链接的提取、LLM 对网页内容的总结、LLM 输出三个变量(主角、文章概括、金句提取)、通过图片搜索工具搜主角图片以及进行排版得到图文总结卡片。 小七姐介绍了 MetaPrompt 用于文章风格提取,可抽取不同风格文章的核心要素作为 prompt 进行风格迁移。已抽取的风格包括万维钢、史铁生、李娟、许倬云、鲁迅、王小波等,还提到了飞书多维表格工作流自动化抽取的使用方法,以及相关的测评和彩蛋等内容。
2025-04-07
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09
ai搜索引擎哪个好
以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 做好 AI 搜索引擎的关键在于: 1. 准确度:取决于问答底座模型的智能程度和挂载上下文的信息密度。要选用智能的问答底座模型,并对 RAG 的检索结果进行排序去重以保证信息密度。 2. 差异化创新:错位竞争,如对问答结果以 outline/timeline 等形式输出,支持多模态搜索问答,允许挂载自定义信息源等策略。 3. 具备“准/快/稳”的特点:回复结果要准,响应速度要快,服务稳定性要高。 在使用 AI 搜索引擎时需注意: 1. 幻觉风险较高,大多数 AI 搜索引擎未连接到互联网。 2. 必应通常是较好的选择,特别是在某些特定场景下,如技术支持、决定吃饭地点或获取建议等,必应可能比谷歌更好。但这是一个迅速发展的领域,使用时应小心。对于儿童,可汗学院的 Khanmigo 提供由 GPT4 驱动的良好的人工智能驱动辅导。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
一个尽可能完美的AGI时代的多Agents协同工作平台应该具备怎样的能力设计?
一个尽可能完美的 AGI 时代的多 Agents 协同工作平台通常应具备以下能力设计: 1. 融合 RL(强化学习)与 LLM(大型语言模型)思想:在多 Agent 情境下,形成复杂多轮会话及协作行动过程,为系统二进行大规模的过程学习提供路径。同时,LLM 能从 RL 过程中习得新的、足够新颖的策略,例如像 AlphaGO 那样通过自博弈创新策略并快速反馈奖励,最终达成任务目标。 2. 具备多项优势: 适配国内外主流开源及闭源大语言模型,支持多模型混合使用,构建企业级场景服务生态,提供场景化解决方案。 拥有灵活可视化无代码应用构建、TexttoAgent 技术,构建便捷,上手简单,操作高效。 能够即时发布上线,支持发布为网页/小程序/API 等多种形态,快速部署 Agent 应用。 提供企业级安全访问控制,依据 Agent 权限控制数据访问,通信过程加密,防止数据泄露风险。 支持多 Agents 协作,构建知识工作者的人机协作流水线,满足复杂业务场景需求。 3. 允许使用自然语言制定 Agent 及其交互规则,并引入低延时的 Realtime API:即使没有专业编程技能,只要能用清晰的自然语言描述出各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。例如在一个简单场景中,可设置接待员和写诗的 Agents 并实现交互。
2025-03-12
如何尽可能多的了解AI的信息
以下是尽可能多了解 AI 信息的一些方法: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点继续询问,能帮助您深度思考。 2. 优质信息源:像没有技术背景的普通人,可以在「即刻」App 的“”等免费圈子获取前沿信息线索,很多 Twitter 上的开发者大牛也会在这里分享,必要时可去 Twitter 和相关官网溯源。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 4. 持续学习和跟进:AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 5. 一位投资人的信息源: 简报:TLDR AI。 播客:No Priors podcast hosted by Sarah Guo 和 Elad Gil、Robot Brains Podcast hosted by Pieter Abbeel、Lex Fridman Podcast hosted by Lex Fridman、The Gradient podcast hosted by Daniel Bashir、Generally Intelligent hosted by Kanjun Qiu、Last Week in AI 。 会议:World AI Cannes Festival 。
2025-02-09
如何尽可能多的了解AI
以下是尽可能多了解 AI 的方法: 1. 认识 AI :对于没有理工科背景的人,可以将 AI 当成一个黑箱,只需知道它是能理解和输出自然语言的东西,其生态位是似人而非人的存在。从人类文明传说和古老哲人的智慧中寻找与 AI 相处的原则,比如在让其实现愿望时,要通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识。 2. 了解基本概念 : 阅读「」部分,熟悉术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)的联系。 浏览入门文章,了解其历史、应用和发展趋势。 3. 开始学习之旅 : 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 4. 选择感兴趣模块深入学习 :AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 5. 实践和尝试 :理论学习后,通过实践巩固知识,使用各种产品创作作品,在知识库分享实践成果。 6. 体验 AI 产品 :与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。 7. 持续学习和跟进 :AI 发展迅速,关注新闻、博客、论坛和社交媒体,加入相关社群和组织,参加研讨会、工作坊和会议,与他人交流。
2025-02-09
国内外的智能体平台都有哪些?尽可能罗列出来
国内外的智能体平台有: 国内:Dify.AI、字节扣子、腾讯元器。 需要注意的是,个人比较常用的国内智能体平台是字节扣子,相关文章主要对比了字节扣子和腾讯元器。智能体相当于个人的数字员工,可以不断提效,帮助实现制定的目标,这和现实中老板给员工下达任务有相似之处。
2024-08-31