Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

飞书和notion,在搭建个人知识库方面,各自的优点和缺点是什么

Answer

飞书在搭建个人知识库方面的优点:

  • 可以方便地分类和整理知识,例如个人搭建某一领域知识库或企业搭建产品资料知识库。
  • 有相关的分享和直播,能帮助用户轻松打造知识管理体系。 缺点:
  • 随着知识库中信息增多,如果分类不合理,很难找到所需文章。
  • 问题答案可能在文章某一段落,每次都需重新阅读文章才能找到答案。

Notion 在搭建个人知识库方面的优点:

  • 是功能强大的知识管理和项目管理工具,可将各种信息 all in one place。
  • 数据库可定制性高,接近关系型数据库,适合有相关需求的用户。
  • 数据库的每一条记录都是一个页面,页面包含可自定义的属性和丰富内容。
  • 支持的块类型非常丰富。 缺点:暂未提及。

此外,Notion 在创建知识库并上传文本内容方面,有特定的操作步骤,如在文本格式页签下选择 Notion 并进行授权,还可选择自动分段与清洗或自定义分段等方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

对于传统意义上的知识库,我相信大家都不陌生。比如上面提到的[通往AGI之路](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)。再比如我使用的飞书搭建自己的通往超级个体之路的知识库,里面存放了我打造超级个体过程中的所有知识和分享知识库是我们个人或者企业的一些信息和知识的集合,一般有这么两类:个人搭建的某一领域知识库,比如AI知识库,里面存放了你日常收集了你日常整理的AI信息和知识企业搭建的产品资料知识库,里面存放了关于公司售卖的产品的详细资料这里多说一句,如果你想搭建自己的知识库,但是还没有行动,我建议你看下我的分享。两篇文档配套1个半小时的直播分享,让你轻松打造自己的知识管理体系[03|利用飞书搭建自己的知识库](https://axsppz4oyvj.feishu.cn/wiki/Tq5bw5HTeiqyeFkjs4YcCm8gnGh)[04|PARA方法论,打造持续升级的知识管理体系](https://axsppz4oyvj.feishu.cn/wiki/PQn5wJ6GMigwH1koj4jcnt4xn8q)我们日常对于传统知识库的使用很简单,当我们遇到问题时,我们可以通过知识库的目录找到对应的文章,通过阅读之前收集的信息或者写作的文章来为自己答疑解惑。但是这里面会有两个痛点随着知识库中信息的增多,如果分类不合理,我们很难再找到当初我们搜集的文章放在哪里问题的答案可能是一篇文章中的某一段落,但是我们每次都需要重新阅读这篇文章才能找到答案那AI时代来临后,是否可以改善这个痛点呢?

基于 Notion 和 Coze 打造个人知识问答系统(含提示词、代码以及完整的工作流设计)

Notion是一款功能强大的知识管理和项目管理工具。我个人是Notion的重度用户,我倾向于把所有的信息都放到Notion里面,比如网上看到的好文章、高质量视频,课程笔记和读书笔记,还有自己写的文章以及项目文档等等,all in one place。Notion最强大的功能是数据库(Database)。Notion数据库的可定制性很高,并且非常接近程序员熟悉的关系型数据库,所以比较对我胃口。我用Notion的数据库作为我的个人信息库/知识库。下面是一个实际的例子。这个数据库主要用来存放我在网上看到的一些质量比较高的文章和视频等,它的结构是比较简单的,因为我是轻管理的那一类人。这个数据库里目前有800多条信息,算是一个中等规模的个人信息库。需要注意的是,所有进入到这个数据库的信息都是经过我筛选的,我接收的信息可能是这个的3倍、5倍,甚至更多。另外,大家也可以看到我最近看了比较多的跟RAG相关的文章,这也是本文我们会重点探讨的一个主题。Notion数据库的每一条记录都是一个页面(Page),每个页面包含两部分:页面属性和页面内容。页面属性就是各种字段,这些字段的名字和类型都是可以自定义的。具体怎么定义要看你的使用场景,比如我这个数据库就有Title、AuthorI(s)、Published time、Rating、Keyword(s)、Abstract、URL等这样一些属性。页面内容里可以放文章的内容,这也是Notion数据库跟其他一些多维表格工具不一样的地方,它是有内容的。Notion的页面内容是由许多不同类型的块(Block)组成的。Notion支持的块类型非常丰富,大家感兴趣的可以自己去了解,这里就不细讲了。

创建并使用知识库

|上传方式|操作步骤|<br>|-|-|<br>|Notion|1.在文本格式页签下,选择Notion,然后单击下一步。2.单击授权。首次导入Notion数据和页面时,需要进行授权。1.在弹出的页面完成登录,并选择要导入的页面。2.选择要导入的数据,然后单击下一步。3.选择内容分段方式:3.1.自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。3.2.自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符删除所有URL和电子邮箱地址1.单击下一步完成内容上传和分片。|<br>|自定义|1.在文本格式页签下,选择自定义,然后单击下一步。2.输入单元名称,然后单击确认。3.单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加2000个字符。1.单击保存。|

Others are asking
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
飞书 aily
以下是关于飞书 Aily 的相关信息: 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。 搭建飞书 FAQ 机器人的步骤: 会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 介绍了企业级 agent 方面的实践。 基于飞书能力开发问答机器人,当前该接口默认(且目前仅支持)是基于字节的云雀大模型,更容易使用的解决方案是飞书 AILY。 使用问答机器人的方法: 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,请在找到最新二维码),然后点击加入,直接@机器人即可。 可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 开发问答机器人的原因: 整个知识库的内容已经非常庞大,新用户难以快速找到所需内容。 传统搜索基于关键词及相关性,无法准确理解语义。 作为 AI 知识库,需要用更先进的办法如 RAG 技术来解决。 在群中提供快速供大家检索信息的方式,使用更加便捷。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13
有哪些飞书 ai知识库
以下是一些飞书 AI 知识库: 1. 元子:WayToAGI 知识库: 工具入门篇(AI Tools): 数据工具多维表格小白之旅: 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈: 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记: 2. 这可能是讲 Coze 的知识库最通俗易懂的文章: 3. 《引导式创作:AI 视觉艺术的多维工作流与创意实践分享》中推荐的飞书知识库:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e
2025-04-11
创建飞书ai机器人
创建飞书 AI 机器人的步骤如下: 1. 工作流搭建: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻。 2. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg 。
2025-04-11
飞书多维表格+deepseek可以干什么
飞书多维表格和 DeepSeek 结合可以实现以下功能: 1. 打造专属的好文推荐网站:当您阅读到好文章时,可以一键存储到飞书多维表格,经过 AI 处理,自动在您的博客网站上呈现出来。实现该功能需要以下步骤: 创建带有 AI 能力(以 DeepSeek R1 为主)的飞书多维表格。 使用 Trae 生成网页,呈现多维表格的内容。 使用 Trae 生成浏览器插件,一键存入多维表格。 2. 批量处理信息,提升工作效率:用户可以批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷。 3. 为非技术人群提供便捷的 AI 应用:普通人无需编程知识也能轻松使用 AI。
2025-04-10
notion ai工具
Notion AI 是一款在笔记和文档中应用 AI 力量的工具,免费可用。它能够让工作更迅速,写作更出色,思考更伟大。Notion 公司一直致力于构建各种“积木块”,如文档编辑、关系型数据库、表格、评论以及不同的访问权限等。AI 对于 Notion 来说是一个很好的机会,使其能够以新的方式组合和驱动这些积木块,例如将 AI 与数据库结合,快速推出 Notion Q&A 等功能。此外,在知识管理体系中,如 Obsidian 也可以嵌入 AI 辅助工具,如通过命令面板打开创建的页面,输入插件名称 custom frames 等操作,还介绍了 Obsidian 与 AI 组合使用的几种思路,包括笔记仓库嵌入大模型、笔记内容作为 RAG 嵌入大模型、笔记内使用大模型编写内容等。
2025-02-26
如何部署本地NOTION AI工具
部署本地 NOTION AI 工具需要考虑以下几个方面: 1. 开始方式: 本地部署:如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 配台电脑:非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 2. 平台选择: 线上平台:出图速度快,不吃本地显卡的配置,且无需自己下载动辄几个 G 的模型,还能看其他创作者的制作的涩图,但为了节约算力成本他们只支持出最高 1024X1024 左右的图,制作横板、高清等图片就会受限。 线下部署:可以自己添加插件,不卡算力,出图质量高于线上平台,但是使用期间电脑基本处于宕机状态,如果配置不高的话还会出现生成半天之后爆显存的情况,导致出图失败。 3. 具体部署步骤(以接入微信为例): 下边将出现代码,复制的时候,注意复制全。 代码我已经分好步骤,每次只需要粘贴一行,然后点击一次回车。 回车后,只有最左边显示中括号对话前缀时,不要操作。 如果发现 ctrl+v 粘贴不进去,试试 shift+ctrl+v 粘贴。 点击菜单中,下边的“终端”,然后开始把代码粘贴进入。 第一步:cd/root||exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(如果这里有了卡点,进行不下去,可能是因为服务器网络问题,去拉取的时候下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到 root 文件夹,把下载的文件上传进去就好了。) 2.2、再粘贴下方代码,出现下图,就代表在执行中了。 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后。刷新一下,重新进入终端,您会看到,最左侧出现了(AI)的字符。如果出现了,那么恭喜您。 第七步:继续,一行一行依次粘贴,依次回车。
2025-02-26
notion AI的网址是什么
Notion AI 的网址是:https://www.notion.so/product/ai?gspk=c3RldmVuZmVybmFuZGV6NTEyNg&gsxid=9ADORr9KVJgy&pscd=affiliate.notion.so
2025-01-10
notionai
以下是关于您提到的“notionai”的相关信息: Notion CEO Ivan Zhao 认为 AI 对于 Notion 是一个特别好的机会。Notion 一直致力于构建各种基础的“积木块”,如文档编辑、关系型数据库、表格、评论及不同的访问权限等。过去 5 年一直在完善这些,使得能够迅速将 AI 与已有功能结合。例如把 AI 和数据库结合,推出 Notion Q&A 等。 Ivan Zhao 认为 RAG 会彻底改变知识管理的方式,未来用户可能不再需要侧边栏等工具来组织知识库,只需简单将信息丢到 Notion 中就能通过各种方式检索。 Notion 是生产力工具领域 AI 策略较为激进的公司,在 ChatGPT 推出 2 个月后就宣布推出 Notion AI,预设了 prompt,上线 1 个月后带来 1000 万美元的 ARR,上线 2 个月后用户突破 400 万,还推出了 Notion Project、Notion Q&A 和 Notion Calendar 等新功能、产品。 相关原文地址:https://mp.weixin.qq.com/s/t5ByNhtOz0MXlTx940JeKQ 原视频:https://youtu.be/HW5Yeqn9eV4?si=9k1VWXul1ww0u3fb 编译:海外独角兽 排版:Scout 本篇内容是 No Priors 对 Notion CEO Ivan Zhao 的访谈编译。
2025-01-08
notion AI如何使用
Notion AI 的使用方式如下: Notion 一直致力于构建各种基础的“乐高积木块”,如文档编辑、关系型数据库、表格、评论及不同的访问权限等。AI 更像是新的引擎,以新的方式组合和驱动这些积木块。由于之前的积累,Notion 能够迅速将 AI 与已有功能结合,推出如 Notion Q&A 等应用。 RAG 会彻底改变知识管理的方式,未来用户可能不再需要侧边栏等工具来组织知识库,只需简单将信息丢到 Notion 中,即可通过各种方式检索。 Notion AI 可直接在笔记和文档中应用 AI 的力量,让工作更迅速,写作更出色,思考更伟大。 在 Notion AI 的发展过程中,其团队在看到 GPT4 的能力后想法发生转变,全身心投入到 AI 项目中,努力让公司内部人员对该技术有共同信念,并招聘更多人才。
2024-12-06
Notion产品中AI有哪些运用?
Notion 产品中的 AI 运用包括以下方面: 1. Notion AI(免费可用):可直接在 Notion 中接入 AI 的能力,帮助用户工作更迅速,写作更出色,思考更伟大。 2. 在知识管理方面,RAG 会彻底改变知识管理的方式,用户只需简单地将信息丢到 Notion 中,就可以通过各种方式进行检索,未来可能不再需要侧边栏等工具来组织知识库。 3. Notion 能够迅速把 AI 和已有功能结合起来,比如将 AI 和文本编辑器、关系型数据库等结合,推出 Notion Q&A 等功能。 4. 团队为了让 Notion 成为一个 AIfirst 的产品,全身心投入到 AI 项目中,搭建相关积木,招聘人才,并让公司内部人员对技术有共同信念。
2024-12-04
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
搭建在线知识库,在线客服
以下是关于搭建在线知识库和在线客服的相关内容: RAG 流程: 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 以构建智能问答客服为例,了解 RAG 流程中的“是什么”与“为什么”同等重要。 创建智能体: 手动清洗数据创建知识库: 点击创建知识库,创建画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以“”分割。 选择飞书文档、自定义,输入“”,可编辑修改和删除。 点击添加 Bot,可在调试区测试效果。 本地文档: 注意拆分内容以提高训练数据准确度。 以画小二课程为例,先放入大章节名称内容,再按固定方式细化处理每个章节。 发布应用:点击发布,确保在 Bot 商店中能搜到。 开发:GLM 等大模型外接数据库: 项目启动:包括 web 启动(运行 web.py,显存不足调整模型参数,修改连接)、API 模式启动、命令行模式启动。 上传知识库:在左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服等。MOSS 同理。
2025-04-13