Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI在企业战略方面有哪些应用场景?

Answer

AI 在企业战略方面的应用场景主要包括以下几个方面:

  1. 构建负责任的 AI 战略:
    • 制定企业 AI 战略时,需在提高效率、促进创新的同时规避潜在风险。企业可通过优化实际操作流程,满足市场需求并保持长远发展。
  2. 明确 AI 的适用范围:
    • 并非所有决策都需由 AI 完成,在复杂决策场景中,AI 更适合作为辅助工具。
    • 常见适用场景包括:
      • 数据密集型工作,如市场分析、客户画像、生产优化等,能提升效率、降低人力成本。
      • 重复性任务,在自动化流程、预测维护等方面表现出色,可降低人为错误。
      • 有限范围内的创新,能基于已有数据提供初步创新建议,但跨领域创新、产品设计等仍由人类主导。
    • 实操提示:企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化的任务上,涉及品牌形象、用户隐私、产品战略的决策由人类主导。
  3. 数据驱动决策:
    • 利用 AI 工具分析大量客户和市场数据,为决策提供有力支持。
    • 为营销、产品开发等部门提供基于数据的建议和指导,将分析结果转化为实际业务策略,与相关部门紧密合作,持续监控效果并收集数据,形成闭环不断优化。

通过以上应用,企业能够将数据转化为商业价值,更精准定位市场和客户,优化产品和服务,在竞争中获得优势,做出更明智的决策并适应市场变化。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

在制定企业AI战略时,**如何在提高效率、促进创新的同时规避潜在风险**,仍是每一个企业决策者无法忽视的关键。企业不需要在短期内进行全面的伦理审查,但可以通过**优化实际操作流程**,在满足市场需求的同时,保持长远发展。[heading2]明确AI的适用范围[content]首先,企业必须针对自身的业务需求明确AI的使用边界。并不是所有的决策都需要由AI完成,尤其在复杂决策场景中,AI更适合扮演辅助工具的角色,而非核心决策者。以下是常见的适用场景:数据密集型工作:如市场分析、客户画像、生产优化等,AI能有效提升效率,减少人力成本。重复性任务:AI在自动化流程、预测维护等方面表现出色,可以大幅降低人为错误。有限范围内的创新:AI能在已有数据的基础上提供初步的创新建议,但跨领域创新、产品设计等仍应由人类主导。实操提示:企业管理层可以引入一个内部评估机制,每季度评估AI在不同业务线中的表现,并针对其表现设定不同的使用权限。AI可以被部署在低风险、可标准化的任务上,而在涉及到品牌形象、用户隐私、产品战略的决策中,应由人类主导。

AI决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程

在制定企业AI战略时,如何在提高效率、促进创新的同时规避潜在风险,仍是每一个企业决策者无法忽视的关键。企业不需要在短期内进行全面的伦理审查,但可以通过优化实际操作流程,在满足市场需求的同时,保持长远发展。[heading2]明确AI的适用范围[content]首先,企业必须针对自身的业务需求明确AI的使用边界。并不是所有的决策都需要由AI完成,尤其在复杂决策场景中,AI更适合扮演辅助工具的角色,而非核心决策者。以下是常见的适用场景:数据密集型工作:如市场分析、客户画像、生产优化等,AI能有效提升效率,减少人力成本。重复性任务:AI在自动化流程、预测维护等方面表现出色,可以大幅降低人为错误。有限范围内的创新:AI能在已有数据的基础上提供初步的创新建议,但跨领域创新、产品设计等仍应由人类主导。实操提示:企业管理层可以引入一个内部评估机制,每季度评估AI在不同业务线中的表现,并针对其表现设定不同的使用权限。AI可以被部署在低风险、可标准化的任务上,而在涉及到品牌形象、用户隐私、产品战略的决策中,应由人类主导。

中小企业利用人工智能(AI)进行转型

"数据分析和洞察"部分的目标是通过使用人工智能(AI)工具来分析大量的客户和市场数据,从而为企业的决策提供有力的数据支持。首先,利用AI工具分析客户数据、市场数据。深入理解客户行为、市场趋势和业务机会。根据企业的具体需求,选择能够处理大数据并提供深度分析的AI工具,如数据挖掘、机器学习模型等。收集来自不同渠道的客户数据(如购买历史、用户行为数据)和市场数据(如行业报告、竞争对手分析)。对收集的数据进行分析,识别模式、趋势和相关性。例如AI工具可以帮助识别特定客户群体的购买习惯,或分析市场上的新趋势。其次,为营销、产品开发等部门提供基于数据的建议和指导。利用数据分析结果指导企业策略,如市场定位、产品优化等。理解AI分析提供的洞察和建议,将其转化为实际的业务策略。与营销、产品开发等相关部门紧密合作,确保数据洞察被有效利用。基于数据洞察,制定或调整营销策略、产品开发计划。实施策略后,持续监控其效果,并收集相关数据。将执行结果反馈到AI分析中,形成闭环,不断优化数据分析和业务决策。通过这种方式,中小企业能够将大量的数据转化为实际的商业价值,更精确地定位市场和客户,优化产品和服务,从而在竞争中获得优势。利用AI进行数据分析和洞察可以帮助企业做出更加明智的决策,并快速适应市场变化。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如何设计市场洞察、战略研究、战略规划的提示词
以下是关于设计市场洞察、战略研究、战略规划提示词的相关内容: 在人工智能迅速发展的当下,提示词工程成为企业领导者需掌握的关键技能。提示词工程是设计和优化输入到 AI 系统指令的艺术与科学。但简单提示词存在局限性,无法满足复杂商业需求,因此出现了如思维链、思维树、思维图等高级技巧,能引导 AI 进行更深入分析、探索多种可能性及处理复杂推理任务。 在设计与市场洞察、战略研究、战略规划相关的提示词时,需考虑以下关键要素和框架: 对于市场洞察: 1. 目标市场:定义产品的目标用户群体和市场定位。 2. 用户需求:列出用户的核心需求和痛点。 3. 竞争分析:分析竞争对手的优势和劣势,确定差异化策略。 对于战略研究: 1. 产品定位:明确产品在市场中的独特卖点。 2. 功能性需求:描述产品必须实现的具体功能。 3. 非功能性需求:包括性能、安全性、可用性等要求。 对于战略规划: 1. 市场趋势:考虑当前市场趋势和未来发展。 2. 商业目标:与业务目标和战略保持一致。 3. 资源分配:规划实现产品所需的资源。 4. 风险评估:识别可能的风险和应对策略。 此外,以 Claude 的 5 层 Prompt 体系为例,可将任务细分,为每个子任务设计专门的 Prompt 并整合结果。同时,Prompt 工程是快速发展的领域,需不断学习和实验,包括关注行业动态、参与社区讨论、建立个人实验日志、跨领域学习以及建立评估体系,如定义成功标准、实施 A/B 测试、收集反馈等,以不断优化 Prompt 设计技巧。
2025-02-14
怎么让Deepseek可以更好的制定金融发展战略
要让 DeepSeek 更好地制定金融发展战略,可以从以下几个方面考虑: 1. 关注行业动态:密切关注全球金融市场的变化,包括存储芯片、晶圆制造、光刻机等领域的技术发展和市场竞争情况。例如,了解 DDR5 库存积压、超压缩内存技术的应用,以及不同厂商在制程和产能方面的调整。 2. 分析竞争对手:研究竞争对手的策略,如苹果借助阿里模型可能带来的影响,以及国内手机厂商如华为、小米、OPPO、vivo 等的应对措施。 3. 技术创新:持续投入研发,提升自身的技术能力,如实现全流程 AI 决策系统、实时处理 PB 级市场数据、自适应动态风控模型等。 4. 降低成本:在训练模型时控制成本,提高性价比,例如 DeepSeek V3 以较低的训练成本取得较好的性能指标。 5. 考虑合作与联盟:关注行业内的合作机会,如厂商之间共建模型联盟以降低研发成本。 6. 适应市场需求:根据市场需求调整战略,例如针对成熟制程和算法创新的市场需求,优化产线利用率。
2025-02-12
有没有相关战略分析岗位的AI应用
在战略分析岗位中,AI技术可以极大地提升数据分析、决策支持和战略规划的效率和准确性。以下是一些AI在战略分析岗位中的应用: 1. 数据收集与整合 自动化数据抓取:使用AI工具自动从多个来源(如市场调研报告、社交媒体、行业新闻等)收集数据。 数据清洗与整合:利用机器学习算法自动清洗和整合不同格式的数据,确保数据的一致性和准确性。 2. 市场分析 市场趋势预测:使用时间序列分析和预测模型来预测市场趋势和需求变化。 竞争对手分析:利用NLP技术分析竞争对手的公开数据(如财报、新闻、社交媒体),提取有价值的信息。 3. 客户洞察 客户细分:使用聚类算法对客户进行细分,识别不同客户群体的特点和需求。 客户情感分析:通过分析客户反馈和社交媒体评论,了解客户的情感倾向和满意度。 4. 财务分析与预测 财务报表分析:使用机器学习模型自动分析财务报表,识别潜在的财务风险和机会。 盈利预测:利用AI模型预测公司的未来盈利情况,为战略决策提供依据。 5. 风险管理 风险预测与评估:利用AI技术预测和评估市场、财务、运营等各方面的风险。 情景模拟与分析:使用AI工具进行不同情景下的模拟分析,评估不同战略方案的潜在影响。 6. 供应链优化 供应链预测:使用AI模型预测供应链中的需求变化,优化库存管理和生产计划。 物流优化:利用AI优化物流路径和运输计划,提高供应链效率。 7. 决策支持 决策树与推荐系统:使用决策树和推荐系统技术,为管理层提供战略决策的建议和支持。 优化模型:利用优化算法(如线性规划、整数规划)解决复杂的战略规划问题,找到最优方案。 8. 商业智能(BI)工具 Power BI与Tableau:将AI技术集成到商业智能工具中,自动化数据分析和报告生成。 数据可视化:通过高级数据可视化技术,将复杂的数据和分析结果以直观的方式呈现,辅助决策。 9. 自然语言处理(NLP) 文本挖掘:利用NLP技术从大量文本数据中提取有价值的信息,如市场报告、客户反馈、行业新闻等。 自动化报告生成:使用NLP技术自动生成战略分析报告,节省时间和人力成本。 这些AI应用可以帮助战略分析师更加高效地处理数据,深入洞察市场和客户,做出更科学的战略决策。如果你对某个具体的应用有更深入的兴趣,欢迎进一步探讨!
2024-07-24
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13