Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ollama windows 安装

Answer

以下是 Ollama 在 Windows 上的安装步骤:

  1. 前往 Ollama 官网下载并安装 Ollama。
  2. 安装完成后,打开 Powershell 运行相关命令。
  3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。
  4. 还可以参考以下教程:
    • 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程:
      • 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。
      • 下载完成后,双击打开,点击“Install” 。
      • 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。
    • 4-SeasonYou 工作流副本:
      • 首先,下载 ollama,网站:Download Ollama on Windows
      • 其次,在llama3:8b-instruct-q4_K_M(ollama.com)网站中,复制代码。
      • 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\ComfyUi-Ollama-YN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
Content generated by AI large model, please carefully verify (powered by aily)

References

打标工具安装

先去[Ollama官网](https://www.ollama.com/)下载并安装Ollama,然后打开Powershell运行以下命令[heading4]Win安装教程[heading4]Mac安装教程[heading4]使用[content]Win编辑run_win.ps1文件,Mac编辑run_mac.sh文件,将目录中的图片路径和触发词填写,运行即可[heading3]GPT 4V打标工具[content]该工具需要使用GPT 4.0的API,3.5不可用,详情见兔狲大佬视频教程Windows版安装教程[heading3]WD1.4[content]打开WebUI,找到Tagger选项卡,如果没有的话说明没有安装插件,参考[插件安装](https://yyn6skjv3j.feishu.cn/wiki/GICawhF95inhcbkdl72c3vf6nMe)教程安装插件[heading3]BooruDatasetTagManager标签处理工具[content]前往https://github.com/starik222/BooruDatasetTagManager/releases下载软件包,解压缩后双击运行即可

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

我们需要进行部署的有三大部分1、本地部署大语言模型2、本地部署FastGPT+OneAPI3、本地部署HOOK项目或COW[heading1]一、部署大语言模型[content]一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

4-SeasonYou 工作流 副本

(MaxRetryError('HTTPSConnectionPool(host=\'huggingface.co\',port=443):Max retries exceeded with url:/QuanSun/EVA-CLIP/resolve/main/EVA02_CLIP_L_336_psz14_s6B.pt(Caused by SSLError(CertificateError("hostname \'huggingface.co\' doesn\'t match either of \'*.extern.facebook.com\',\'extern.facebook.com\'")))'),'(Request ID:05b932bd-e982-434e-8dc7-e41cca2e949f)')⑧Ollama大模型部分,为了应对没下载大模型带来的报错,因此需要下载大模型首先,下载ollama,网站:[Download Ollama on Windows](https://ollama.com/download)其次,在[llama3:8b-instruct-q4_K_M(](https://ollama.com/library/llama3:8b-instruct-q4_K_M)[ollama.com](https://ollama.com/library/llama3:8b-instruct-q4_K_M)[)](https://ollama.com/library/llama3:8b-instruct-q4_K_M)网站中,复制代码如红框:然后,像我建议一样打开ComfyUi根目录下的custom_nodes\ComfyUi-Ollama-YN的文件路径,在上方的路径下输入cmd:进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可:⑨instanid部分:

Others are asking
本地用Ollama部署模型,使用哪个ChatBox客户端好?
目前在本地使用 Ollama 部署模型时,没有特别突出或被广泛推荐的特定 ChatBox 客户端。不同的客户端可能在功能、界面和兼容性方面存在差异,您可以根据自己的需求和使用习惯进行选择和尝试。常见的一些客户端包括但不限于 Web 端的简单界面工具,或者一些具有特定功能扩展的桌面应用程序。但具体哪个最适合您,还需要您亲自测试和评估。
2025-03-27
ollama框架有哪些推荐
Ollama 是一个开源的框架,具有以下特点和功能: 1. 旨在简化在本地运行大型语言模型(LLM)的过程,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者或非技术人员使用。 2. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 3. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 4. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小,以满足不同需求和硬件条件。模型库可通过 https://ollama.com/library 查找。 5. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 6. 提供 REST API,用于运行和管理模型,以及与其他应用程序的集成选项。 7. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装 Ollama 可通过官方下载地址 https://ollama.com/download 进行。安装完成后,可通过访问相关链接判断是否安装成功,在命令行中运行相应命令即可使用,如运行本地大模型的命令。还可通过 ollama list 确认模型下载情况。 此外,在 termux 软件中进行相关操作时,需执行如 aptget update、安装 curl 命令、安装 ollama 命令等。启动模型时,以 phi3 模型为例,在 termux 软件中执行命令 ollama run phi3 并等待下载完成。当然,Ollama 还有很多其他模型,如有需要可在 ollama 官网自行查看命令与下载。
2025-03-14
本地部署ollama+deep seek后怎么有效搭机械领域建知识库或微调为机械领域
以下是本地部署 ollama + deep seek 后有效搭建机械领域知识库或微调为机械领域的步骤: 1. 下载 Ollama 程序:官方网址为 https://ollama.com/ 。默认下载到 C 盘,若想修改安装目录到 D 盘,后续会有相关说明。下载完成后,右下角会出现 Ollama 的图标,打开命令行输入相应命令回车。根据自身独立显卡性能选择模型,如英伟达 2060Super 可选择 Deepseekr1:14b 的模型。若下载速度慢,可按 Ctrl+C 强制退出重新下载。下载完毕后,再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相应命令,下载好后直接退出终端。 2. 配置模型:返回 RAGFlow 中,打开右上角设置,进入模型提供商进行配置。选择 Ollama,并配置相关信息,基础 URL 按要求设置,设置完成后点击确定。 3. 导入嵌入模型:导入一个嵌入模型用于文本向量化。 4. 设置系统模型:完成相关设置。 5. 创建知识库:返回知识库,进入数据集,可导入文件或设置文件夹当作知识库,自行设置。导入完毕后,对文件进行解析,解析速度取决于本机 GPU 性能,越好的显卡解析越快。解析完成后,进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。
2025-03-07
请给我找一个安装ollama-deep-researcher的完整教程,用于windows上。
很抱歉,目前没有关于在 Windows 上安装 ollamadeepresearcher 的完整教程。建议您通过以下途径获取相关信息: 1. 官方网站:访问 ollamadeepresearcher 的官方网站,查找针对 Windows 系统的安装指南。 2. 相关技术论坛:在专业的技术论坛上搜索相关主题,可能会有其他用户分享的安装经验和教程。 3. 视频平台:部分视频平台上可能有关于此软件在 Windows 上安装的演示视频。
2025-03-06
如何在电脑上用chatbox框架,使用ollama搭建deepseek模型
在电脑上使用 Chat Box 框架,通过 Ollama 搭建 DeepSeek 模型的步骤如下: 1. 阿里云百炼平台: 百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 百炼平台无需部署,可直接使用 DeepSeek R1 模型。 DeepSeek R1 模型的价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 使用 DeepSeek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态可以识别更多输入信息,如读文件、图片等,而 DeepSeek R1 本身不是多模态模型。 通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 DeepSeek R1,并获取 API key。 API key 可删除旧的并重新创建,方便本地软件连接。 2. Docker + RAGFlow + Ollama 搭建: 返回 RAGFlow 中,打开右上角设置,进入模型提供商。 选择 Ollama,配置相关信息,模型取决于运行的模型。 配置基础 URL。 导入一个 embedding 模型,用于文本向量化。 设置系统模型设置。 进入数据集,导入文件,可设置文件夹当作知识库。 对文件进行解析,解析速度取决于本机 GPU 性能。 解析好之后,进入检索测试。 测试没问题,可进入聊天界面,助理设置可自行设置。 对于开源模型,如 DeepSeek、Llama 等,可以使用以下方式: 1. Inference Provider:使用 Together AI 等推理服务提供商,在线体验和调用各种开源模型。 2. LM Studio:使用 LM Studio 等本地应用程序,在个人电脑上运行和部署较小的开源模型。
2025-03-03
ollama是什么,使用场景有什么
Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。 它具有以下特点和优势: 1. 支持多种大型语言模型:包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,能让用户轻松在本地环境中启动和运行大模型。 3. 模型库:提供丰富的模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,通过 https://ollama.com/library 查找。 4. 自定义模型:用户能通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 总的来说,Ollama 是一个高效、功能齐全的大模型服务工具,不仅适用于自然语言处理研究和产品开发,也适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户。 其使用场景包括但不限于: 1. 自然语言处理研究。 2. 产品开发。 安装方法:官方下载地址为 https://ollama.com/download 。安装完成后,在 macOS 上启动 ollama 应用程序,在 Linux 上通过 ollama serve 启动,可通过 ollama list 确认是否安装成功。运行大模型时,在命令行中输入相应命令即可,模型会自动下载到本地。在 Python 程序中使用时,需确保 ollama 服务已开启并下载好模型。
2025-02-22
如何在中国国内windows系统下安装Chatagi的软件
在中国国内 Windows 系统下安装 ChatGPT 相关软件的步骤如下: 1. 对于苹果系统: 在 AppleStore 下载 chatgpt:中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。最终在 AppleStore 搜到 chatgpt 结果后下载安装,注意别下错。 支付宝购买苹果礼品卡并充值,订阅付费 App:打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。包括支付宝购买礼品卡、在 apple store 中兑换礼品卡、在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 2. 对于青椒云软件(Windows 系统): 电脑端打开网站 http://account.qingjiaocloud.com/signin?inviteCode=2GSJQYVF ,注册/登陆账号。 跳转到下载页,根据自己电脑的系统选择相应版本下载。 客户端登录,电脑端打开登陆界面,短信登录。 进入界面,选择华南 6,点击“新增云桌面”选择【定制产品】选择【WayToAGIAIPO 大雨编程共学】,支付 0.01 元即可开机使用。 开机进入桌面,停止使用时一定要回到客户端页面,点击关机按钮,否则时长会一直消耗。
2024-12-16
ComfyUI的Windows下载包
以下是关于 ComfyUI 的 Windows 下载包的相关信息: 下载地址:https://github.com/comfyanonymous/ComfyUI ,您可以在此下载安装包,也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip 。 安装方法: 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 目前安装 ComfyUI 有以下两种方法,您可以根据自己的需求选择: 本地安装: 命令行安装:普适性最强,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说可能有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。下载最新的版本,解压就能使用。 云端安装:云端配置相对较高,生成图片的速度会更快,但是需要一定的费用。如果您想在云端安装,可以跳到。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 汉化安装方法:在网盘连接中下载汉化包,并解压。将文件夹拖入到 E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。启动 ComfyUI 界面,点击右侧的小齿轮。在弹出界面的底部就可以切换语言了,选择中文即可。点击下方的“切换语言”,就可以在中文和英文之间随意切换。需要 blender 插件和汉化包的朋友,可以关注公众号【白马与少年】,发送【ComfyUI】即可获取链接。
2024-11-22
windows电脑和安卓手机可以怎么注册并使用chatgpt? 请详细说明如何访问国外网络和注册及使用、
以下是 Windows 电脑和安卓手机注册并使用 ChatGPT 的详细步骤: 安卓手机: 1. 对于自带谷歌框架的机型(如红米 K60): 打开系统设置。 拉到最底下,点击更多设置。 点击账号与同步。 点击谷歌基础服务。 打开基础服务按钮。 2. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后打开谷歌商店,点击右上角登录谷歌账号。 3. 安装 ChatGPT: 到谷歌商店搜索 ChatGPT 进行下载安装,建议把谷歌邮箱也安装上,方便接收验证码。 如果您只想体验 ChatGPT 3.5 版本,不升级 GPT4,可跳转到第 4 步第 6 小步进行登录使用,如果想直接订阅 GPT4 Plus 版本,请接着往下看。 Windows 电脑:未提供相关内容。 需要注意的是,在中国访问国外网络需要合法合规的途径。同时,ChatGPT 的使用也需要遵守其相关规定和服务条款。
2024-11-14
未来,想要用AI更多,买苹果电脑还是windows电脑
在未来如果想要更多地使用 AI ,选择苹果电脑还是 Windows 电脑取决于您的具体需求和使用场景。 苹果电脑通常具有出色的稳定性和优化的操作系统,其硬件和软件的整合度较高,对于一些特定的 AI 应用,如基于苹果生态的开发和设计工作,可能会有较好的体验。 Windows 电脑则具有更广泛的硬件选择和软件兼容性。在 AI 领域,许多专业的软件和工具在 Windows 平台上也有良好的支持。 如果您更注重系统的稳定性和一体化体验,且对苹果的生态系统有偏好,那么苹果电脑可能是不错的选择。但如果您需要更多的硬件配置选择和更广泛的软件支持,Windows 电脑可能更适合您。 最终的决策还需综合考虑您的预算、具体的 AI 应用需求以及个人使用习惯等因素。
2024-11-01
怎么在 windows 部署 微信机器人
以下是在 Windows 部署微信机器人的详细步骤: 一、安装环境 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 python。 3. 粘贴入以下代码,确认是否有 pip。 4. 两步命令输入完,核对一下。如果有的话,会分别显示出版本号,可以跳过“安装环境这一步,直接到“二、部署项目”。如果没有,需要按照以下步骤安装: 先进行 python 的安装,安装包已准备好,直接点击下载。 关闭窗口,再次运行那两行命令会发现已经有了。 二、部署项目 1. 下载 COW 机器人项目,解压缩。 2. 解压后,打开 COW 文件夹。 3. 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 4. 在 Powershell 窗口中,粘贴进入:pip install r requirements.txt ,等待执行完成后,继续粘贴:pip install r requirementsoptional.txt 。 5. 上边的都执行完成后,关闭窗口。在当前目录下,找到 configtemplate.json 文件。 6. 新生成的便是配置文件,右键使用记事本打开这个文件,修改相应内容。 删除新文件里的所有代码。 复制提供的代码,粘贴到文件里,并找到第 4 行,把一开始注册并保存好的千问 API key 粘贴到双引号里。 7. 保存上述文件,然后在当前文件下,找到 plugins/godcmd 文件夹,复制 config.json.template 重命名为 config.json 。 8. 双击 config.json,进入后,设置下 password 和 admin_users ,可以设置为和示例一样,后边再改,点击保存后关闭。 注意:本教程完成后,程序将在您的电脑本地运行,假如您关掉了窗口,那么进程也就结束。所以,如果您想让 AI 持续使用,就必须保持窗口打开和运行,也就是电脑不能关。Mac 系统步骤也是一样,只是打开命令符的命令些许不同,遇到问题问大模型就好了。 此外,还有基于 Hook 机制的微信 AI 机器人部署步骤: 1. 接下来,需要使用一个特定版本的微信,已为您准备好,点击下载,下载后直接替换安装。(安装后,有可能您在的群却显示退出,其实没事,发个消息就好了,并不是真的退出) 2. 下载 NGCbot 机器人项目,解压缩。 3. 解压后,打开 NGCbot 文件夹。 4. 在空白处,shift+鼠标右键,点击“在此处打开 Powershell 窗口”。 5. 打开 shell 窗口后,粘贴进入相关代码,并点击回车。 6. 粘贴进入相关代码,并点击回车,等待安装,安装完成后,关闭窗口即可。 7. 然后在当前的 NGCbot 文件夹下,找到 Config 文件,找到 config.yaml,右键选择打开方式,选择用记事本方式打开。 8. 打开后看到相应页面,把 Administrators 先改成特定内容。如果您已经有了 FastGPT 或者 OpenAI 的 key,可以把这里的 Ai_Lock,修改成“1”。然后拉到最下边,在 OpenAI 那里,去添加您的 AI 模型 key。填写格式,参照原有的格式即可。
2024-09-09
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
trae如何安装
以下是 Trae 的安装步骤: 1. 由于 Trae AI 官网部署在海外,且其本身需要使用海外的大模型,所以需要通过 VPN 等方式科学上网。 2. 在官网(https://www.trae.ai/download)直接点击下载,Trae 会自动识别您的电脑芯片。 3. 下载完成后,如果是 Mac 系统,将左侧的 Trae 应用拖动到右侧的文件夹内;如果是 Windows 系统,双击 Trae 图标,即可完成安装。 4. 安装完成后,点击图标启动,进行以下简单设置: 选择主题背景和默认语言,可选择中文。 对于提供的 Cursor、VS Code 等其他 AI 编程工具的配置和插件迁移,如果是第一次使用类似工具,可直接点“Skip”选项。 对于不理解意思的设置,直接点“Skip”选项。 5. 选择合适的登录方式,登录方式包括 Google 账号登录、Github 账号登录、邮箱登录。如果没有账号,可新注册一个账号。推荐有余力的用户访问 Github 官网(https://github.com/)注册。 注意:Trae 仅在部分地区可用,可能需要开启科学上网。登录完之后,若出现“App Unavailable”提示,可能是所在地区不可用,此时需要开启科学上网。网页登录成功之后可以把科学上网关掉。
2025-04-08
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27