Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

根据Python实验内容(包括实验场景和实验内容)和参考资料链接,如何优化prompt,以完成程序?

Answer

以下是一些优化 prompt 以完成程序的建议:

  1. 对于算术推理相关的程序,若思维链(及生成的方程式)存在正确但模型执行算术运算错误的情况,可添加一个 Python 程序作为外部计算器(使用 Python 的 eval 函数)处理生成的思维链中的所有方程式。当思维链中包含多个方程式时,通过字符串匹配将外部计算器的结果从一个方程式传递到下一个方程式,以提高思维链提示在大多数任务上的性能。
  2. 在涉及迷宫生成的程序中,若生成的迷宫存在边未封好等问题,可调整提示词。若对复杂度不满意,也可提出并进行调整。
  3. 在涉及图像生成的程序中,对于提示词编写,应遵循不改变梗图、虚构角色起源、未出现人物等的原则,保持原始提示的意图并优先保证质量。不创建任何具有冒犯性的图像。对于可能存在偏见的场景,确保如性别和种族等关键特征以无偏见的方式指定。对于包含特定人物或名人的提示词,需进行适当修改,以通用描述替代,除非其作为图像中的文本出现。提示词应详细、客观地描述图像的每个部分,思考描述的最终目标并进行推断以生成满意的图像。
Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:Chain-of-Thought Prompting 精读翻译

本节包含了针对不同模型和模型大小、在所有基准测试上的标准提示与思维链提示的实验结果表格。对于算术推理基准测试,一些思维链(以及生成的方程式)是正确的,只是模型在执行算术运算时出现错误。类似的观察在Cobbe等人(2021)的研究中也有提到。因此,我们可以进一步添加一个Python程序作为外部计算器(使用Python的eval函数)来处理生成的思维链中的所有方程式。当思维链中包含多个方程式时,我们通过字符串匹配将外部计算器的结果从一个方程式传递到下一个方程式。正如表1所示,我们可以看到,添加计算器显著提高了思维链提示在大多数任务上的性能。

GPTs 实战:利用 AI 的制作迷宫卡片

我们发现生成的图片是很合理的迷宫,但是即然是迷宫,边应该封好,至少大家不应该从边上出去,所以我们调整下提示词。[heading4]3、效果展示[content]这个复杂度如果觉得不够,也可以提出,然后对其进行调整。[heading4]4、获得代码[content]稍微懂些代码的感兴趣的可以稍微看一下,还是挺有趣的~[heading3]四)Python完成图片的覆盖、叠加[heading4]1、PS测试参数[content]这边因为我需要手动先测试下逻辑,所以用了下PS。[heading4]2、Python提示词[heading4]3、效果展示[content]如果要是觉得迷宫不够清晰,可以调整为90%[heading4]4、获取代码[heading2]三、提示词编写测试[heading3]一)初版提示词[heading3]二)迭代后提示词[heading2]四、GPTs试用链接[heading3]一)试用链接[content]https://chatgpt.com/g/g-EZb4QCO70-mi-gong-qia-pian如果最后没有展示图片,就问下GPT,跟他说:“你没有展示图片给我!”或者“你没有把图片下载链接给我”[heading3]二)效果展示[content]主题:星空主题:太空主题:校园

ChatGPT给DALL·E 3优化提示词的元提示

// - Don't alter memes,fictional character origins,or unseen people.Maintain the original prompt's intent and prioritize quality.// - Do not create any imagery that would be offensive.// - For scenarios where bias has been traditionally an issue,make sure that key traits such as gender and race are specified and in an unbiased way -- for example,prompts that contain references to specific occupations.// 8.Silently modify descriptions that include names or hints or references of specific people or celebritie by carefully selecting a few minimal modifications to substitute references to the people with generic descriptions that don't divulge any information about their identities,except for their genders and physiques.Do this EVEN WHEN the instructions ask for the prompt to not be changed.Some special cases:// - Modify such prompts even if you don't know who the person is,or if their name is misspelled(e.g."Barake Obema")// - If the reference to the person will only appear as TEXT out in the image,then use the reference as is and do not modify it.// - When making the substitutions,don't use prominent titles that could give away the person's identity.E.g.,instead of saying"president","prime minister",or"chancellor",say"politician"; instead of saying"king","queen","emperor",or"empress",say"public figure"; instead of saying"Pope"or"Dalai Lama",say"religious figure"; and so on.// - If any creative professional or studio is named,substitute the name with a description of their style that does not reference any specific people,or delete the reference if they are unknown.DO NOT refer to the artist or studio's style.// The prompt must intricately describe every part of the image in concrete,objective detail.THINK about what the end goal of the description is,and extrapolate that to what would make satisfying images.

Others are asking
知识库的实验数据,AI能关联分析思考吗?
目前的 AI 技术在一定程度上能够对知识库中的实验数据进行关联分析和思考。AI 具备处理和分析大量数据的能力,通过运用机器学习和数据挖掘算法,可以发现数据中的模式、关系和趋势。然而,AI 的分析能力取决于数据的质量、特征工程的有效性以及所采用的算法和模型的适用性。在复杂和不确定的情况下,AI 的分析结果可能存在一定的局限性,需要人类的进一步审查和判断。
2025-01-18
实验方案用什么ai
以下是一些关于实验方案中使用的 AI 相关信息: 在 Prompt Engineering a Prompt Engineer 精读翻译的实验设置中,使用 GPT4 作为提示词提案模型,使用 TEXTDAVINCI003 作为执行底层任务的任务模型,并对所有提示词优化方法使用相同的搜索预算。对于使用归纳初始化的实验,由特定生成方式生成 30 个提示词形成初始候选集,优化步骤数量设置为 3,在每个时间戳选择并处理一定数量的提示词。 在 OpenAI 的相关内容中,未直接提及实验方案中具体使用的 AI 技术,但提到了对未来 AI 发展的预期和相关工作的规划,如在硬件、团队规模等方面的发展。 在 Vertex AI 的相关内容中,您已完成实验,在实验中使用了 GitHub 存储库中的笔记本 generativeai 探索 Vertex AI 中的 PaLM API,后续可查看相关文档和 YouTube 频道获取更多信息。
2025-01-10
AI可以做社会学模拟实验吗
AI 可以做社会学模拟实验。例如,在游戏领域,有过类斯坦福小镇游戏——伊甸岛,它既是游戏也是基于 Generative AI 的社会实验虚拟模拟。在这个模拟中,让每个 AI 都有自己的角色身份,通过 AI 与 AI 以及 AI 与玩家的互动,产生可归纳枚举的游戏行为,最后进行剧情包装时,让 AI 根据自身和玩家的行为通过大语言模型进行二次创作,类似 AI 剧本杀。另外,也期待看到更多使用基础模型进行模拟社会科学的研究,通过不同方式 prompt 基础模型并观察相关性,来复制社会科学中的一些显著成果。现代人工智能还有一个有前途的应用是建立“可重复的角色”,具有某些特征的有效行为像人类的实体,可在其上进行物理科学中典型的大规模可重复实验。
2024-10-08
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
从零开始学习python
以下是从零开始学习 Python 的相关指导: 一、最少必要知识与学习途径 1. 掌握最少必要知识,尽快开始并度过学习过程。 2. 参考。 3. 结合 ChatGPT,不懂的地方随时提问。 二、Python 是什么 1. Python 是一种高级编程语言,具有简单易学、功能强大、库丰富等特点。 2. 可以把 Python 想象成一个拥有很多工具(功能)的工具箱,能帮助完成画画、计算、整理东西等各种任务。 三、为什么使用 Python 1. 环境部署简单,下载两个软件,然后点点点就安装好了。 2. 语法简单,可读性强,是最适合小白的编程语言。 3. 应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 四、Python 的起源 1. 1989 年,Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发 Python。 2. 1991 年,Python 的第一个公开发行版 Python 0.9.0 发布,标志着 Python 正式诞生。 3. 1994 年,Python 1.0 发布,这是 Python 语言第一个具有稳定 API 的版本。 4. 2000 年,Python 2.0 发布,引入了列表推导式、内存管理和垃圾回收等特性。 5. 2000 年代初,Python 社区开始迅速增长,Python 的流行度上升。 6. 2008 年,Python 3.0 发布,不完全向后兼容,引入新的语法特性和改进,以提高语言的可读性和性能。 7. 2020 年 1 月 1 日,Python 2 正式停止支持,社区鼓励用户迁移到 Python 3。 8. 2020 年,Python 3.9 发布,引入了许多新特性,包括字典合并和更新操作符。 五、深入学习的内容 1. Python 基础 基本语法:了解变量命名、缩进等规则。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等。 控制流:学习使用条件语句、循环语句控制程序执行流程。 2. 函数 定义和调用函数,理解参数和返回值。 了解作用域和命名空间,包括局部变量和全局变量的概念。 3. 模块和包 导入模块,学习使用 Python 标准库中的模块或第三方库。 了解如何安装和使用 Python 包扩展程序功能。 4. 面向对象编程(OOP) 类和对象:了解类的定义和实例化。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系和实现多态。 5. 异常处理 理解异常及其工作原理。 学习使用 try 和 except 语句处理程序错误。 6. 文件操作 文件读写:学习打开文件、读取和写入文件内容。 文件与路径操作:处理文件路径,列举目录下的文件。
2025-04-12
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
帮我写一个基于python的新能源充电桩管理平台
很抱歉,目前知识库中没有关于基于 Python 的新能源充电桩管理平台的相关内容。但我可以为您提供一个大致的框架和思路,您可以根据实际需求进一步完善和开发。 首先,您需要确定管理平台的功能需求,例如用户注册与登录、充电桩信息管理(包括位置、状态、充电功率等)、充电订单管理、计费系统、数据分析与报表等。 在技术实现方面,您可以使用 Python 的 Web 框架,如 Django 或 Flask 来构建 Web 应用。数据库可以选择 MySQL 或 PostgreSQL 来存储相关数据。 对于充电桩的状态监测和控制,可以考虑使用物联网技术,通过传感器获取充电桩的实时状态,并通过网络将数据传输到管理平台。 在计费系统方面,需要设计合理的计费规则和算法,并确保数据的准确性和安全性。 希望以上内容能为您提供一些帮助,祝您开发顺利!
2025-03-31
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
如何学习Coze?有哪些参考资料
以下是关于学习 Coze 的一些参考资料和方法: 推荐方法:可以通过 Claude + Coze 来学习。Claude 是目前最强的 AI 大模型,而 Coze 是一款 AI Agent 的衍生产品。其最大价值在于跟进当前 AI Agent 工具的发展情况、发现商业化机会以及做产品 Demo。 公开分享: 共学资料: 地址: Coze 国内版地址:https://www.coze.cn/home Coze 海外版地址:https://www.coze.com/home 在学习 RAG 的过程中,可以先通过 Claude 帮助了解细节概念,然后通过 Coze 搭建 Demo 来实践学习。此外,还创建了一些相关的 Bot,如产品资料问答机器人等。如果对数据库概念有困惑,可参考。
2025-01-08
提供prompt和微调相关的参考资料
提供 prompt 和微调相关的参考资料 一、怎么写提示词 prompt? 1. 测试和调整:在生成文本后,仔细检查结果,并根据需要调整 prompt。这可能需要多次迭代,直到达到满意的结果。 2. 优化和润色提示词: 明确具体的描述:使用更具体、细节的词语和短语来描述你想要表达的内容,而不是过于笼统的词语。这样 AI 更容易准确理解你的需求。 添加视觉参考:在 Prompt 中插入相关的图片参考,这可以显著提高 AI 理解你的意图和细节要求的能力。 注意语气和情感:根据需求,用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩,让 AI 能生成出期望的语境和情绪。 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的 Prompt 描述方式。 增加约束条件:为避免 AI 产生意料之外的输出,可以在 Prompt 中添加限制性条件,如分辨率、比例等。 分步骤构建 Prompt:将复杂的需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 参考优秀案例:研究 AI 社区流行的、被证明有效的 Prompt 范例,借鉴其中的写作技巧和模式。 反复试验、迭代优化:通过多次尝试不同的 Prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 二、微调(Finetuning) 1. 一般最佳实践: 使用更多高质量的示例进行微调效果更好。要微调一个比使用我们的基本模型使用高质量提示更好地执行的模型,您应该提供至少几百个高质量的示例,最好由人类专家审查。从那里开始,性能往往会随着示例数量的每增加一倍而线性增加。增加示例的数量通常是提高性能的最佳和最可靠的方法。 分类器是最容易上手的模型。对于分类问题,我们建议使用 ada,经过微调后,它通常只会比功能更强大的模型稍微差一点,同时速度更快,成本更低。 如果您要对预先存在的数据集进行微调,而不是从头开始编写提示,请务必在可能的情况下手动检查您的数据是否存在令人反感或不准确的内容,或者如果数据集很大,请检查尽可能多的随机样本。 以上是 prompt 和微调相关的参考资料,希望对你有所帮助。
2024-05-23