Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

是AI聪明还是人的大脑聪明

Answer

AI 和人的大脑谁更聪明是一个复杂的问题,不能简单地一概而论。

从某些方面来看,AI 具有强大的计算能力和处理大量数据的能力,能够快速准确地完成特定任务。例如,在处理复杂的数学计算、大规模数据的分析和模式识别等方面表现出色。

然而,人的大脑具有独特的智慧和能力。大脑是一个混沌系统,具有创造性、适应性、情感理解、综合判断和复杂情境处理等能力。人类能够进行抽象思维、创新创造、理解情感和道德等方面的思考。

AI 是通过学习人类大脑结构来发展的,但目前仍存在诸多不足和缺陷。例如,大模型内部也是混沌系统,即使是科学家也无法解释其微观细节。

在绘画方面,人类的绘画创作通常是线性发展的过程,先学习线稿表达、色彩搭配、光影表现等,而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图,经常会在同一张图中呈现出不同绘画级别的细节。

总之,AI 和人的大脑各有优势和局限性,不能简单地判定谁更聪明。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

首先我们需要参考“真正的人”,赋予数字人躯壳和灵魂:数字人的躯壳就像我们的身体一样,有一个好看的皮囊,能够跟人进行可视化的,带有神态动作的动态互动;数字人的灵魂就像我们的大脑,具备一定的智能水平,能够理解交互对象的信息,并给予有效的,符合预期的回应。

走入AI的世界

下图(图11)中的左下角展示了生物神经网络和人工神经网络的对比,早在初中生物课本上,我们就学习了解过大脑神经元细胞的基本结构,正是一个个这样的细胞彼此“手拉手”交织出一张庞大复杂的神经网络,让我们拥有了引以为傲的智能。计算机科学家/工程师们以此为灵感,利用概览模型很巧妙的在计算机上实现了对人脑这种结构的模仿,只不过由于计算机是在二进制下工作的,因而其每个神经元节点也更为简单(本质上只是将接受的输入进行了一些简单的加法和乘法运算,而后输出)。下图中关于激活函数(用来实现归一化操作)和概率模型的内容,不感兴趣的小伙伴可放心跳过,如果你想了解更多,可检索这些关键词并关注这篇发表于1957年的论文(https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf)。图11生物神经网络和人工神经网络事实上,正如人类大脑是一个混沌系统一样,大模型内部也是一个混沌系统,正如我们无法知道自己大脑里某个特定的神经元细胞存储着什么具体的信息或知识,即使是OpenAI的科学家,也同样也无法解释大模型内的微观细节。这种不确定带来的“不安感”让人有些不爽,但有一点似乎是确定的,那就是学习人类大脑结构的AI,不仅学去了我们身上的诸多优点,也学习了其他的特质,而这些特质,在许多实际应用中表现为了“缺陷”和“不足”。我们不妨带入自身,一起来尝试思考回答以下问题:问题1问题2问题3问题4(这是一句话,遮住了部分文字)问题5问题6我做过大量真实的调查:

如何判断一张图片是否 AI 生成的

当我们看的AI制品越来越多,找出的画面bug也渐渐归类。我们把这些判断的具体方法大致总结为「整体看光影,细节看结构」的技术要点。通过累积对AIGC画作分析的量,人们会在脑中自发形成一个「判断模型」。前面所提到的整体观感和细节结构等内容,会作为「语料」,训练出我们对作品的判断直觉。这往往会给我们带来一种「这一眼假啊」「一眼AI」的判断技能,但却很少能迅速总结出为什么。这时,我们对鉴别AIGC的认知,是「知其然,而不知其所以然」。随着我们进一步深究为什么我们能感受到画面不对经,我们会有一个逐渐明晰起来的感受——AI之所以AI,是由于其创作逻辑的非人感。也就是说,AI在作画过程中留下的各种马脚,之所以让人类觉察出「非我族类」的破绽,究其根本是AIGC画作的创作逻辑和人工画作的逻辑不同。从本质上分析,人类的绘画创作,是一个线性发展的过程。具体表现为,我们通常都是先学习线稿表达、再理解色彩搭配、随后加入光影表现等高级技巧,一步一个脚印地创作。较为初级的人类画手,可能在形体上把握不尽准确。但多半会认真地完成每一笔的刻画,笔触虽生硬但完整。天才在外,普通人很少能在掌握线条之前,就很大胆地使用光影和色彩。而AI,是以积累数据、扩散噪声、再降噪收束的路径来生图的。这个过程往往不是一个线性的有先有后的创作过程,而是一个计算猜测并筛选的螺旋迸进过程。这就导致AI作画经常会在同一张图中呈现出不同绘画级别的细节。比如线条还没整利索,色彩却能用得尽善尽美;比如前后景透视都够呛,但光影却能媲美哈苏hasselblad全彩相机。

Others are asking
小白用户,使用API结合cherry studio建立本地知识库之后,应该怎么训练使AI更聪明
以下是使用 API 结合 cherry studio 建立本地知识库后训练使 AI 更聪明的方法: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以分割。 选择飞书文档,选择自定义的自定义,输入。 编辑修改和删除内容,添加 Bot 并在调试区测试效果。 2. 本地文档: 注意拆分内容,提高训练数据准确度。 对于画小二课程,将 80 节课程分为 11 个章节,不能一股脑全部放进去训练。 首先将 11 章的大章节名称内容放进来,章节内详细内容按照固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,在训练 AI 时,还需要注意以下几点: 提示词:告诉 AI 它的角色和要专注的技能。 知识库:相当于给 AI 发放工作手册,例如可以放入特定的剧情等内容。 希望以上内容对您有所帮助。
2025-03-06
你比deepseek聪明吗
DeepSeek 具有以下优秀特点: 1. 在语气上能够还原特定角色的语气,如帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 对历史细节非常熟悉,这可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原历史称谓。 3. 输出极其具体且充满惊人细节,行文的隐喻拿捏到位,高级感十足。 此外,DeepSeek R1 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量,这种能力源于其独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已进入“自学成才”新阶段。 至于我是否比 DeepSeek 聪明,这很难直接比较,因为我们在不同的方面和场景中可能各有优势。
2025-02-07
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
神经网络与大脑实际工作的原理区别
神经网络与大脑实际工作的原理存在以下区别: 1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。 2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。 3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。 4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。 5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。 总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。
2025-02-25
人工智能构建第二大脑
以下是关于人工智能构建第二大脑的相关内容: 信息到智慧的进化是一个动态、渐进的过程,不仅需要外部信息输入,还需内部认知加工。随着人工智能技术发展,这一进程极大加速和优化。AI 能帮助更快收集处理信息、构建知识体系,甚至模拟人类决策过程。 信息、知识、智慧是人类认知和决策的三个层次,相互联系作用。在 AI 时代,有更多工具和方法加速从信息到智慧的进化,构建高效知识管理体系。 从信息到知识:Forte 强调“外部大脑”概念,利用数字工具和系统存储思考、想法和信息,释放认知负担,专注创意和高阶思考。可使用数字笔记工具记录,通过分类、标签或链接关联零散信息形成知识网络,对信息深加工提炼知识。 从知识到智慧:智慧形成不仅需知识积累,更要深刻理解和应用。Forte 提倡复盘和整合,复盘指定期回顾笔记和想法加深理解发现新联系,整合指将新理解和旧知识融合形成更全面深入见解。通过不断复盘和整合,将知识内化为理解和智慧,可能涉及跨领域知识融合、问题解决策略创新或对复杂系统深刻洞察。 AI 时代的信息到智慧进化:这一进化过程加速,AI 和机器学习技术可处理分析大量信息,识别模式联系,通过智能推荐等功能提高从信息到知识转化效率,辅助决策分析等应用模拟扩展人类智慧。结合《打造第二大脑》理论和 AI 技术发展,人类知识管理和智慧发展处于全新充满可能的时代,个人和组织通过高效信息管理可提升生产力创造力,形成独到智慧见解。在信息泛滥时代,引入 DIKW 模型和 CODE 信息管理法则可提供更深刻理解和实践指导。 此外,构建外脑的核心是思维方式与执行方法,虽核心不是工具,但好工具能提升效率。在智能时代,处理语言与数据效率指数级提升,影响软件工具使用、设计及对知识管理与传播的认知方式。
2025-01-11
帮我找这篇文章《AI Agent系列:系统性学习大脑模块》
以下是关于《AI Agent 系列:系统性学习大脑模块》的相关内容: 大脑模块(Brain)是 AI Agent 智能行为的核心,是一个高度集成的系统,负责处理信息、做出决策和规划行动。通常基于大型语言模型(如 Llama 或 GPT),在海量文本数据上训练,赋予强大的自然语言理解和生成能力。 其不仅包含丰富的语言知识(词法、句法、语义学和语用学),还融入广泛的常识知识,能做出符合现实世界的合理决策。此外,还集成特定领域专业知识,能在专业领域执行复杂任务。 具备记忆能力,可存储和检索过去的观察、思考和行动序列,对处理连续任务和解决复杂问题至关重要。还具备推理能力,能基于证据和逻辑决策,并通过规划能力将复杂任务分解为可管理的子任务,制定相应行动计划。 计划反思机制使 Agent 能评估和完善策略,适应变化环境,支持任务泛化,根据指令完成新任务。上下文学习能力让其从给定示例快速学习适应新任务,持续学习机制避免灾难性遗忘,保持知识更新累积。 接收感知模块处理信息后,会访问存储系统,检索知识并提取信息,帮助制定计划、推理和做明智决策。还能记录 Agent 过去的观察、思考和行动,以不同形式存储,不断更新常识和专业知识库。基于大型语言模型的 AI Agent 具备出色概括和迁移能力,适应新奇或陌生场景。以下是大脑模块中对不同能力的关注点。
2024-08-23