Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以介绍下AGI的知识体系吗,从入门级开始

Answer

以下是为您介绍的 AGI 知识体系入门级内容:

首先,推荐您从以下几个方面开始了解:

  1. 记忆相关基础知识,如 AI 的历史、基本术语、重要人物、方法和原理等。您可以通过以下链接获取详细信息:

其次,您可以先试用提示词练手,参加相关的 battle 活动,如 prompt battle、video battle 等,与大神交流。还可以关注最新活动,如 AI 春晚、AIPO 项目等,感兴趣的话可以报名参与执行导演、平面设计、商务统筹或运营等工作。

另外,“通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。

市面上的【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

如果让我推荐一门AI课

大家好,我是AJ,今天我要给大家分享一门超级棒的AI课!?省流版:【野菩萨的AIGC资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的AI课程之一,也是全网技术更新最快的课程!课程内容涵盖AI绘画、视听语言和ChatGPT等多个体系的知识。无论你是AI初学者还是进阶者,这门课程都能满足你的学习需求。[heading8]扫码添加菩萨老师助理,了解更多信息[content]?完整版:今天我以野菩萨学生的身份来和大家分享学习心得。AJ,互联网公司产品经理,创建了“通往AGI之路”“通往AGI之路”不仅是开源的AI知识库,更是连接AI学习者、实践者、创新者的社区,基于无边界组织完成了AI春晚、“离谱村”短片等共创项目[heading3]为什么在开源社区中,我们还要讨论知识付费??[content]这就好比选择自己在家锻炼,还是去健身房找教练,不同的人有着不同的需求。【开源社区】资源丰富,适合自律的自主学习者,而【知识付费课程】则提供系统结构、专业指导、针对性计划和互动反馈,是一种高效的学习途径。[heading3]社区需求和个人经历?[content]最近,社区有很多新同学加入,每次都有人问有没有适合小白新手入门的课程。对于啃知识库的图文,大部分人更愿意接受老师手把手的教学。在创建WaytoAGI之前,我希望能快速入门AI绘画,于是投入金钱学习了许多付费的AI课程,并对市面上的众多课程进行了深入分析。最终,我选择了野菩萨的课程,真的超级棒,我强烈推荐给大家啊!

通往 AGI 之路

[heading3]推荐布鲁姆分类法学习路径记忆:先从[AI的历史](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbl1tOC3ZKbrcHVn&view=vewTtypUZc)、[基本术语](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbltvr7KExCt7Jpw&view=vewjxk9tDu)、[重要人物](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblLtN12KuvP5reO&view=vewuvGBXhd)、[方法和原理](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblolGx2mprs1EQz&view=vewx5ROYtl)等开始了解,看看[入门课程](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)

01-通往AGI之路知识库使用指南

[heading2]智能章节本章节提到AI春晚即将开始,去年300人共创30天举办了一场AI春晚,比较跨时代。今年也将开始,感兴趣者可报名参与执行导演、平面设计、商务统筹或运营等工作。还提到平时活动会展示,可在首页看到最新活动,如AIPO项目就在最新活动里。[01:59:58](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=7198000)AJ建议入门者先试用提示词练手,可参加相关battle活动,还可畅想10月20日AIPO活动本章节主要建议入门者先拿几个提示词练习。如果对AI绘画视频感兴趣,可以参加prompt battle、video battle等活动练手、与大神交流。另外,欢迎大家思考在10月20日的AIPO活动中展示的项目,即使目前只是初步想法,也可与AI共创,说不定能够实现或受很多人喜爱。[02:01:32](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=7292000)10天内从模型基础到应用搭建的活动,含奖励与赞助商支持本章节介绍了一个10天内的活动,包括模型相关知识讲解、应用搭建,活动回放放在指定链接。参与者可在小红书发布带特定标签内容获流量扶持,活动有两个奖项。感谢多个赞助商,还有校园大使和社区伙伴支持。活动有AI切磋大会玩法,且计划将其推广到高校。有问题可群内交流。[02:06:25](https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=7585000)AI相关作业、交流及开源知识库共创活动

Others are asking
什么是AGI
AGI 即人工通用智能,通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。 例如,OpenAI 的相关计划中,Q2025(GPT8)将实现完全的 AGI,但因一些原因有所推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在关于 AGI 实现后未来 20 年人类社会的变革的研究中,AGI 的出现被视为人类历史上具有转折意义的事件。 Sam Altman 认为,呈现人工通用智能特征的系统正浮现,人工通用智能通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,它是人类进步脚手架上的另一个工具。
2025-04-18
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。AGI 的出现被视为人类历史上具有转折意义的事件,当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,包括社会结构、价值观、权力格局、人类角色等多个方面。我们的使命应是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-04-15
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
身份是小学语文老师,如何自学waytoAGI
以下是为您整理的相关内容: 1. 10 月 9 日小作业中提到:熟悉 waytoagi 知识库,并找到 Prompt 提示词框架文章,给出两个提示词框架和生成结果。框架一是“CRISPE 框架”,处理小学六年级同学丢钱引发的同桌纠纷,给出三种解决方式,包括调查真相、教育双方,全班寻找失物、避免误解,引导调解与反思。生成结果为详细的解决步骤。同时提到人工智能时代的三个基石是数据、算法、算力,数据和算法可在开源数据库等找到,算力可在云计算平台如 AWS、Google Cloud、Microsoft Azure 找到。 2. 6 月 11 日 AI 秒学团队中,有人分享了搭建聊天功能工作流的经历,提到在实践中不断迭代、调整和优化。一位纯社科背景的高校老师感谢 way to AGI 带文科生进入 agent 的“坑”,并提到小团队给予的帮助。 3. 问卷中,刘翔宇表示自己是国内一线互联网 AI 产品经理,愿意共同维护 WaytoAGI 开源社区,学习目标是了解 Comfy 基础理论等多方面,所在城市为北京。
2025-04-12
入门级介绍
以下是关于入门级的介绍: 在 AI 产品经理方面,入门级能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建,对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 在搭建微信机器人方面,入门级如 Stuart 的教程,教你用最简单的方式搭建微信机器人,网速好的话一个小时能搞定。
2025-03-20
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
有哪些入门级的搭建工作流术语
以下是一些入门级的搭建工作流术语及相关内容: 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 端口设置方法:通过神秘代码让所有联网操作应用指定端口,端口号一般在代理选项中,将其填入相关代码,在 CMD 中复制粘贴代码回车,无反应即成功,需安装 Git。 工作流搭建过程:从零开始搭建工作流,如加载 checkpoint loader、prompt 等节点,按颜色连接,未连接会报错,连接后填写提示词即可生成图像。 工作流原理讲解:以做菜为例,空的 latent 是锅,代表图片大小;模型是食材,正反向提示词是菜谱,VE 是调料,按颜色连接各部分。 使用他人工作流:从工作流网站下载 json 文件,拖入相关界面,若有爆红说明有节点未安装,可在 manager 中安装缺失节点。 工作流本地与在线使用方法:介绍了工作流在本地和在线的使用步骤,如安装、处理报错、放置模型文件等。 解决工作流依赖冲突:讲解了通过修改 cast NODE 里的 requirements 来解决依赖冲突的方法。 网页版工具的使用:指出很多工具都有网页版,本地没有工具时可用网页版。 涉及的应用领域包括大摩托车商业应用、学会 AI 工具、自主搭建工作流、生图制作、视频制作、AI 设计创作、3D 动画、建筑方案图、个人应用、人物一致性出视频、设计工作流、各种实践应用、工作流的设计思路、家装和游戏设计、商业和生活、娱乐、综合应用、实现个人想法、游戏美术全流程等。
2024-12-15
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
标签体系可用的ai
以下是关于标签体系可用的 AI 的相关内容: 在 AI 时代的知识管理体系构建方面: 1. 提示词可帮助规划 PARA 分类模式。PARA 是一种代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)的流行知识管理框架,AI 能通过分析工作模式和内容类型,自动生成提示词,以简化分类过程,加快组织和检索信息。 2. 提示词能帮助设计笔记标签系统。有效的标签系统是知识管理的关键,AI 可通过分析笔记内容和使用习惯,推荐合适的标签和标签结构,提高检索效率。 3. 知识助手 Bot 可帮渐进式积累领域知识。随着在特定领域的深入,知识助手 Bot 能根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,持续扩展知识边界并确保知识及时更新。 在 AI 术语库方面,包含了众多与 AI 相关的术语,如 Knowledge Engineering(知识工程)、Knowledge Graph(知识图谱)、Knowledge Representation(知识表征)、MultiHead Attention(多头注意力)、MultiHead SelfAttention(多头自注意力)等。
2025-03-30
1. 利用AI完成技术论文的学习阅读; 2. 结合相关知识体系解读论文,并制作成学习分享PPT。
以下是关于利用 AI 完成技术论文的学习阅读,并结合相关知识体系解读论文制作学习分享 PPT 的一些建议: 在技术论文学习阅读方面: 可以借助 AI 工具,如 Claude 和 Gamma.app。Claude 能够帮助快速寻找符合条件的论文、提取精炼论文中某部分信息。 对于复杂推理,可以利用思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可在问题后加“请你分步骤思考”。 检索增强生成(RAG)能将外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 程序辅助语言模型(PAL)在 2022 年的论文中被提出,对于语言模型的计算问题,可借助其他工具如 Python 解释器作为计算工具。 ReAct 框架于 2022 年在《React:在语言模型中协同推理与行动》的论文中提出,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,可借助 LangChain 等框架简化构建流程。 在制作学习分享 PPT 方面: 可以先对论文进行深入理解,提取关键信息,包括摘要描述、研究问题、基本假设、实验方法、实验结论、文章主要结论、研究展望等。 利用 AI 工具获取相关理论的简单介绍。 了解并使用合适的 PPT 制作工具,如 Gamma.app。 需要注意的是,小白直接看技术论文有难度,需要一定的知识储备。同时,Transformer 是仿生算法的阶段性实现,未来 10 年、20 年可能不再被使用。
2025-03-24
软件行业质量体系工程师可以用AI做什么
软件行业质量体系工程师可以利用 AI 实现以下转变和拓展工作: 1. 需求分析师可转变为 AI 洞察翻译官,未来能利用 AI 分析海量数据以揭示隐藏的用户需求,技能需向数据分析、用户心理学和商业洞察力转型。 2. 系统架构师可转变为创新架构策略师,未来设计能适应快速变化和 AI 集成的灵活架构,技能要向前沿技术跟踪、跨学科知识整合和创新思维转型。 3. 开发工程师可转变为 AI 协作编程专家,未来与 AI 结对编程,专注于创新性和复杂逻辑的实现,技能要向 AI 工具应用、算法优化和创造性问题解决转型。 4. 测试工程师可转变为质量战略专家,未来设计高级测试策略,处理 AI 无法覆盖的边缘情况,技能要向测试策略设计、用户体验评估和风险管理转型。 5. 运维工程师可转变为系统优化专家,未来专注于系统整体优化和异常情况处理,技能要向性能调优、安全加固和智能监控系统设计转型。 6. 项目经理可转变为价值流优化专家,未来专注于价值交付和团队协作效率的提升,技能要向精益管理、跨职能团队协调和持续改进转型。 此外,AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。AI 在医疗保健、金融服务、零售和电子商务、制造业、交通运输等行业也有广泛应用,例如医学影像分析、药物研发、风控和反欺诈、产品推荐、预测性维护等方面。
2025-02-11
如何创建一个应用于教学的各个环节,如备课体系、作业批改、出题建议、辅助出题等的智能体?
要创建一个应用于教学各个环节的智能体,您可以参考以下步骤和考虑以下方面: 1. 提前收集教育领域的需求,例如让云谷老师协助收集需求和案例,社群小伙伴帮助实现。这些需求可以包括办公提效的具体场景、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、辅助出题、建立孩子的成长体系记录、孩子成长的游戏(如寻宝游戏)、朗读(模拟老师泛读,学生背诵,AI 评判)、文生图和文生视频在备课时的针对性、学科本身的教育辅助、分析学生行为并给出策略(基于教育心理学)、教师模拟培训、公开课备课辅助、指导新老师处理学生矛盾和家长问题以提高沟通能力等。 2. 明确最终交付物的形态和背后的思考,使需求描述更清晰。 3. 注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包。新注册用户可获得 2000 万 Tokens,也可通过充值/购买多种模型的低价福利资源包,或者共学营报名赠送资源包。 4. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目可能会使用到 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 等模型。 5. 进入智能体中心 我的智能体,开始创建智能体。为了照顾初学者,可以手把手进行编辑,完成一个简单智能体的搭建。 此外,在创建过程中,还可以考虑以下相关的产品和服务: 1. 具身智能的企业产品。 2. 3D 眼镜、AI 绘本、AI 图书等。 3. 学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体等。 4. Zeabur 等云平台、0 编码平台。 5. 大模型如通义、智谱、kimi、deepseek 等。 6. 编程辅助、文生图工具(如可灵、即梦等)。 需要注意的是,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以满足教学的实际需求。
2025-02-10
小白学习AI的知识体系
对于小白学习 AI 的知识体系,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 有兴趣伙伴,可以留言互动,有需要可以提供一份 AI 工具逐渐进入状态的 tips 文章。
2025-01-25
给人工智能伦理建设提出建议,在内容和体系方面都可以
以下是为人工智能伦理建设提出的一些建议: 在内容方面: 1. 关注算法的可解释性,使人工智能的决策过程能够被理解和解释。 2. 研究方法以评估、表征和减少数据集中及人工智能系统中的偏差。 3. 确保人工智能系统的安全性和鲁棒性,包括进行保证、验证、校验、安全和控制等方面的工作。 4. 重视隐私和安全,包括用于训练和推理人工智能系统的数据集,以及相关的软件和硬件。 5. 研究人工智能系统在科学发现和社会挑战方面的应用。 6. 考虑人工智能系统对社会、伦理、安全、教育、劳动力和安全等方面的影响,特别是对社会中不同群体,尤其是历史上被边缘化的群体的社会影响。 7. 进行定性和定量的未来能力、应用和影响的预测。 在体系方面: 1. 开展教育项目,支持在 K12、社区学院、本科、研究生、博士后、成人学习和再培训等阶段培养与人工智能系统相关的多样化劳动力。 2. 提高对人工智能系统的伦理、社会、安全和安全影响的认识。 3. 促进对人工智能原理和方法的广泛理解,以培养能够使用人工智能产品并适应其带来的社会和经济变化的劳动力和公众。 4. 针对不同的行业应用,如智能制造、智能家居、智慧城市、科学智算等,制定相应的标准,规范技术要求和应用场景。 5. 制定安全标准,规范人工智能全生命周期的安全要求,包括基础安全、数据、算法和模型安全、网络技术和系统安全、安全管理和服务、安全测试评估、安全标注、内容标识、产品和应用安全等。 6. 制定治理标准,规范人工智能的技术研发和运营服务等要求,包括人工智能的鲁棒性、可靠性、可追溯性的技术要求与评测方法,以及全生命周期的伦理治理要求,如伦理风险评估、公平性、可解释性等伦理治理技术要求与评测方法,还有伦理审查等标准。
2025-01-02