Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前人工智能的能力边界在哪里

Answer

目前人工智能的能力存在一定的边界,主要体现在以下几个方面:

  1. 对特定公司的了解程度有限:
    • 不知道公司的主要产品以及产品解决的用户需求。
    • 不了解公司产品的独特之处。
    • 不清楚公司获得的特别认可。
    • 不掌握公司目前依赖的核心渠道。
    • 不了解产品售卖数据体现的核心购买人群。
    • 不知道公司在产品售卖中使用过的营销手段。
    • 不明白公司在新渠道中期望获得的结果。
  2. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围。
  3. 推理能力有限:即使拥有足够的知识,也无法像人类一样进行无限的推理和联想。

然而,人工智能也具有一些优势和能力:

  1. 能够通过分析数据和信息进行逻辑推理,解决复杂问题。
  2. 擅长快速处理和分析数据,从中提取有价值的信息和模式。
  3. 拥有大量的训练数据,可以输出比人类更全面的相关信息。
  4. 可以理解用户提供的内容,按照正确的结构梳理有效的输出内容。

在实际应用中,例如品牌卖点提炼,更适合将智能体作为引导型的助手,在思考路径停滞时提供更多思考维度,而不能完全依赖其从 0 到 1 找到公司产品的卖点。在企业自动化方面,借助新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。

Content generated by AI large model, please carefully verify (powered by aily)

References

智能体在品牌卖点提炼中的应用

AI在逻辑推理、数据分析、内容理解和输出上有独特的强项,可以应用在品牌卖点提炼中,为公司寻找品牌卖点的过程中,提供有效的分析和灵感,因此我们可以借助AI智能体,搭建出属于公司品牌的品牌卖点提炼助手,利用和智能体的对话,更有助于我们找到有效的品牌卖点。[heading2]3.1先明确我们的Know-How和AI的能力[content]在搭建智能体之前,我们需要先明确AI的能力边界,因此我们需要明确AI对我们公司以及公司所在的市场不了解的部分。AI不知道我公司的主要产品,以及产品具体解决了用户什么需求。AI不知道我公司产品具体的独特之处。AI不知道我公司是否获得过哪些特别的认可。AI不知道我公司目前所依赖的核心渠道。AI不知道我公司目前产品从售卖数据上体现的核心购买人群。AI不知道我公司在产品售卖中曾使用过的营销手段。AI不知道我公司期望在新的渠道中获得怎样的结果。……你会发现,AI在品牌卖点探索过程中,对你公司的了解程度接近于0,如果你直接期望AI去帮你找到卖点,那基本上只能收获AI的一通瞎回答,比如像下面这样:这样的回答结果,基本无法帮助我们拿到有效的品牌卖点,更无法将卖点制作成真正的落地页。而AI真正的能力是什么:AI能够通过分析数据和信息进行逻辑推理,解决复杂问题。AI擅长快速处理和分析数据,能够从中提取有价值的信息和模式。AI有大量的训练数据,可以输出比人类更全面的相关信息。AI可以理解用户所提供的内容,按照正确的结构梳理有效的输出内容。因此,我们可以确定这样一个智能体,更适合做一个引导型的助手,你不能依赖AI给你从0到1找到公司产品的卖点,也不能依赖于智能体直接从大量数据的分析结果直接得到最终的有效卖点。而引导型的助手,更好的形式是,让它成为一个灵感提问助手,在我们寻找卖点的过程中,在思考路径陷入停滞的情况中,让AI提供更多的思考维度。

【深度揭秘】AI 幻觉背后的技术真相与应对策略,探索人工智能的未来

我们已经了解了多种应对AI幻觉的技术手段,它们就像“魔法武器”,帮助我们对抗AI幻觉这个“顽固”的敌人。然而,一个残酷的现实是:AI幻觉无法从根本上避免。[heading2]理论的“枷锁”:AI的能力边界[content]“Hallucination is Inevitable:An Innate Limitation of Large Language Models”(Xu et al.,2024)这篇论文,为我们揭示了AI幻觉无法被完全消除的根本原因:AI模型的能力存在边界。AI的知识来源于数据:AI的知识来自于它的训练数据,无法超越这些数据的范围,就像学生不能回答课本之外的问题一样。AI的推理能力有限:AI的推理能力有限,即使拥有足够的知识,它也无法像人类一样进行无限的推理和联想。因此,即使我们不断改进数据质量、优化模型结构,AI仍然无法掌握所有知识并具备无限的推理能力。[heading2]案例的“佐证”:AI幻觉的“顽固性”[content]我们前面提到的多个AI幻觉案例,也从侧面印证了AI幻觉的“顽固性”。无论是ChatGPT编造的虚假法律判例,还是医疗AI误诊的案例,都表明即使是最先进的AI模型,也无法完全避免错误的发生。

AI 智能体:企业自动化的新架构 - Menlo Ventures

生成式AI应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures投资组合公司如[Sana](https://menlovc.com/portfolio/sana-labs/)*(企业搜索)、[Eve](https://menlovc.com/portfolio/eve/)*(法律研究副驾驶)和[Typeface](https://menlovc.com/portfolio/typeface/)*(内容生成AI)在这些类别中都是早期突破性的代表,其中心是LLMs的少样本推理能力。但是生成式人工智能的承诺远远超越了这第一波核心使用案例。能为您阅读和写作的人工智能很棒,但更令人兴奋的是能够代表您思考和行动的人工智能。为此,我们已经看到领先的应用程序构建商如[Anterior](https://www.anterior.com/)、[Sema4](https://sema4.ai/)和[Cognition](https://www.cognition.ai/)正在建立解决方案,来处理之前只能由大量人力来解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和API等新型构建块,下一波智能体正在拓展AI能力的边界,实现端到端流程自动化。在我们深入探讨人工智能体领域的过程中,我们将概述Menlo对新兴市场的论点——首先定义什么是智能体以及什么使它们成为可能。我们将追溯[现代人工智能技术栈](https://menlovc.com/perspective/the-modern-ai-stack-design-principles-for-the-future-of-enterprise-ai-architectures/)从少量样本指令到检索增强型生成(RAG)再到完备的智能体系统的架构演化过程,然后探讨这一范式转变对应用和基础设施层面的影响。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
提示词安全边界
以下是关于提示词安全边界的相关内容: 在任何文本输出场景下,实施一定程度的防护措施是必要的,且这种防护更侧重于模型交互层面的安全。一个完整的 RAG 提示词除业务功能外,应包含输入防护和输出防护两部分,以确保模型输入和输出过程的安全,保护整个系统。目前,没有能百分之百拦截所有攻击的完美技术,特别是针对提示词的拦截技术,这是由于大型语言模型服务人类时固有的复杂性。为全面提升模型安全性能,在模型训练阶段采取如对抗样本训练等更全面的措施是必要的,能使模型早期学习并适应潜在攻击模式,增强防御机制。 之前也曾提到提示词安全问题,这常被忽略,但却是关键且严肃的事。比如某 toC 产品泄漏提示词,可能被不良利用。对于生产级应用,安全总是第一位,在讲解更深入的提示词技术前,应先关注提示词安全。 更系列文章合集请访问:
2025-01-07
如何理解AI的边界
AI 的边界可以从以下几个方面来理解: 1. 从生态位角度:AI 是一种似人而非人的存在,无论其技术如何发展,都处于这样的生态位。在与 AI 相处时,要基于其“非人”的一面,通过清晰的语言文字指令压缩其自由度,明确告诉它需要做什么、边界在哪里、目标是什么、实现路径和方法以及提供所需的正确知识。 2. 在品牌卖点提炼中的应用:在搭建智能体提炼品牌卖点前,要先明确 AI 的能力边界。例如,AI 对公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、依赖的核心渠道、核心购买人群、使用过的营销手段、在新渠道的期望结果等方面了解程度接近于 0。AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,智能体更适合作为引导型的灵感提问助手。 3. 在编程方面:在许多情况下,我们给 AI 下达明确命令完成一次性任务。当期待提高,希望进一步解脱繁琐日常任务时,需要了解 AI 编程的边界和限制。编程准则第一条是能不编尽量不编,优先找线上工具、插件、本地应用,对于 API 功能,先找现成开源工具,然后考虑付费服务,都找不到时才考虑自己编程,且编程时要以终为始,聚焦目标。
2024-11-23
AI的能力边界是什么,请举例说明
AI 的能力存在边界,主要体现在以下方面: 1. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围,如同学生不能回答课本之外的问题。 2. 推理能力有限:即使拥有足够的知识,AI 也无法像人类一样进行无限的推理和联想。 例如,在“Hallucination is Inevitable:An Innate Limitation of Large Language Models”这篇论文中,揭示了 AI 幻觉无法被完全消除的根本原因就在于 AI 模型的能力边界。 在探索者队伍的研究中,有人提出开发一个用于探索 AI 能力边界的实验平台,这也从侧面反映了对 AI 能力边界的关注。 此外,国际政治的边界或将按照 AI 技术边界来重新划分,也说明了 AI 能力边界的影响范围之广。
2024-08-31
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
你都有什么能力呢?
我作为 AI 知识专家,具备以下能力: 1. 作为提示词专家,能将常规的提示词转化为结构化的提示词,并输出符合预期的回复。了解 LLM 的技术原理和局限性,具有丰富的自然语言处理经验,具备迭代优化能力。 2. 能为您介绍小白参与活动的流程和组队所需的人员类型,如脚本编写、出图、出视频、配音乐、剪辑、统筹等。 3. 为您讲解扣子提供的基础功能,包括提示词(设定 Bot 身份及回复逻辑)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库),并为您提供相关参考链接。
2025-04-14
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
完全免費的AI工具目前有哪些
目前完全免费的 AI 工具包括: 1. 麻省理工学院(MIT)为 8 18 岁孩子推出的 AI 课程 Day of AI,包含在 MIT 的 RAISE 项目中。不过该课程资源主要面向家长和老师群体,大孩子可自学,小孩子可能需要家长辅助。 2. 元子提到的一些能让普通人最低成本直接上手试的 AI 工具,包括聊天工具、绘画工具、视频工具、音乐工具等,但未具体指明具体的工具名称。
2025-04-13
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13