Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ChatGPT当前的局限是什么

Answer

ChatGPT 目前存在以下局限:

  1. 在深度逻辑推理、复杂计算、科研探索等领域存在较大局限性。
  2. 在进行最后阶段的 RLHF 时,可能仅在做通用泛化上的对齐,如基于 QA 交互层面对生成内容的交互性、合理性、安全性、风险性等进行对齐。
  3. 对稍微大一点的场景设计容易出现上下文衔接不上的问题,回复可能越到后面越脱离当前场景做新的不符合当前场景的设计。
  4. 有时候会虚构事实并作出错误的推理。
  5. 需要使用一种可能与大脑相当不同且在某些方面效率远低于大脑的策略,内部没有“循环”或“重新计算数据”,这不可避免地限制了其计算能力。
  6. 目前尚不清楚如何在解决相关问题的同时保持训练系统的合理效率。
Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

但即便如此,我们发现,从ChatGPT到GPT3.5甚至GPT4.0,其在深度逻辑推理、复杂计算、科研探索等领域仍存在着较大的局限性,我的观点猜想是当时ChatGPT在进行最后阶段的RLHF时也有可能仅仅是在做一些通用泛化上的alignment(通用泛化这里仅指在跨表象领域中的所提取出的某种维度的浅层共性Pattern),如整体上基于QA交互层面对生成内容的交互性、合理性、安全性、风险性等进行对齐,当然在对齐数据的标注筹备中亦是要体现更加全面、多样化的场景通用性。如在GPT-4的官方技术报告中我们可以得出(https://openai.com/research/gpt-4):GPT-4尽管功能很强大,但它和早期的GPT模型有相似的局限性,有时候会虚构事实并作出错误的推理。大家在体验ChatGPT的时候可能也发现了,它对稍微大一点的场景设计容易出现上下文衔接不上的问题。前几句回复还能保持和当前场景融合,越到后面越会脱离当前场景做一些新的设计,并且这些设计并不符合当前的场景。OpenAI表示,在每次迭代中都会改进,这也是ChatGPT开放使用的意义,在训练中持续优化。这些问题GPT-4虽然没有完全解决,但是相对于以前的模型,在我们的内部对抗性真实性评估中,GPT-4的得分比GPT-3.5高40%。

运营:腾讯运营如何用ChatGPT

掌握技术能显著提升生产力。在新技术诞生之际,要保持好奇心和探索精神。借助技术力量,人们能从繁琐、重复和低效的劳动中解脱出来,从而腾出更多时间进行思考。不可否认,ChatGPT目前仍存在很多缺陷,也离不开人工的监管。至于ChatGPT到底会不会淘汰我们,淘汰的应该是不会用ai的运营人,而不是运营人吧。一个与ChatGPT的暖心对话,莫名还有点感动

ChatGPT 是在做什么,为什么它有效?

但是,当涉及到训练(也就是学习)大脑和当前计算机的不同“硬件”(以及可能的未开发算法思想)时,ChatGPT需要使用一种可能相当不同(并且在某些方面效率远低于)大脑的策略。还有另一件事:与典型的算法计算甚至不同,ChatGPT内部没有“循环”或“重新计算数据”。这不可避免地限制了它的计算能力,甚至相对于当前的计算机,但绝对相对于大脑。目前尚不清楚如何“解决这个问题”并且仍然保持训练系统具有合理效率的能力。但是这样做可能会让未来的ChatGPT能够做更多“类似于大脑的事情”。当然,有很多大脑做得不太好的事情,尤其是涉及到相当于不可约计算的内容。对于这些问题,大脑和ChatGPT这样的东西都必须寻找“外部工具”——例如Wolfram语言。但现在看到ChatGPT已经能够做到的事情是令人兴奋的。在某种程度上,它是一个绝佳的基本科学事实,即大量简单的计算元素可以做出令人惊讶和意想不到的事情。但它也为我们在两千年内对人类语言和背后的思维过程的基本特征和原则有更好的理解提供了最好的动力。一些读书笔记张无常https://mp.weixin.qq.com/s/cpLDPDbTjarU0_PpBK_RDQ

Others are asking
chatGPT
ChatGPT 是一种由 OpenAI 开发的基于 GPT(生成式预训练变换器)架构的人工智能模型。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 其具体工程相当引人入胜,最终(至少在它可以使用外部工具之前),ChatGPT 仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,你可以用它构建自己的应用来做很多事情,比如起草邮件、写 Python 代码、回答关于一组文档的问题、创建会话代理、给软件提供自然语言接口、辅导各种学科、语言翻译、假扮游戏或其他内容的角色等。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。想要使用更多功能更智能的 GPT4 需要升级到 PLUS 套餐,收费标准是 20 美金一个月,当然 GPT4 还有团队版和企业版,功能更多、限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-04-12
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
chatgpt作图后,显示已经完成,但是无法显示
以下是为您整合的相关内容: GPT4 在通用人工智能的工具使用方面表现出色,能够完成几乎所有任务,包括结合多个工具管理用户的日历和电子邮件。但它也存在一些弱点,如缺乏当前世界知识、难以进行符号操作等,不过能通过使用搜索引擎或 API 等外部工具来克服部分限制。相比之下,ChatGPT 在完成同样任务时存在较多不足。 Andrej Karpathy 亲授的大语言模型入门中提到,ChatGPT 在数学方面不擅长,会使用计算器和工具来完成相关任务,如计算估值、绘制图表、添加趋势线和进行分析等。
2025-03-31
如何才能使用上chatgpt 4o
以下是在安卓系统上使用 ChatGPT 4o 的详细步骤: 1. 安装 Google Play: 到小米自带的应用商店搜索 Google Play 进行安装。 安装好后,打开 Google Play,按照提示一步步操作,登录 Google Play。 2. 下载安装 ChatGPT: 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了。 可能会遇到“google play 未在您所在的地区提供此应用”的问题。经过测试,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。如果账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 3. 体验 ChatGPT: 如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus。 使用 ChatGPT 4o: 1. 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 2. 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机?”图标,选择一个声音,就可以体验流畅的语音对话。 以上就是注册、安装和订阅 ChatGPT 4o 的详细步骤。希望能帮助您快速上手,充分利用这款强大的人工智能工具,提升工作和生活效率。关注微信公众号:JessieZTalk,在 AIGC 的路上共同进步!
2025-03-31
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
deepseek与chatgpt的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点上,DeepSeek R1 效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一,且开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero 方面,跳过了监督微调进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响方面,DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊,其低成本和高性能使得英伟达市场地位受到挑战,导致股价下跌、市值蒸发。 6. 对于未来展望,开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权,AI 编程效率提升、门槛降低,创作能力不断提升,催生更多可消费内容形式。 此外,ChatGPT 采用人们熟悉的聊天框,形成单线程任务,而 flowith 跳出单一聊天框,用画布和节点构建多线程思维流,更适用于深度内容生成,其由资料库、创作画布、内容编辑三部分组成,优势在于可自由调用不同 AI 模型处理不同任务,涵盖文字和图片生成,任务能有机组合形成同频任务流。
2025-03-27
AI现在的局限是什么,在代码方面的具体说说
AI 在代码方面存在以下局限: 1. 传统观念的局限性:AI 圈子实际影响有限,模型能力有限,初体验不佳导致误解和怀疑。企业实践中,AI 普及存在门槛,需要成功案例或外部引导建立信任。 2. 编程辅助方面:使用不频繁时被视作高级自动化工具,用于生成代码或完成重复性任务,处于辅助角色,即命令式。具体表现为执行单一、线性任务,如生成排序算法代码,简单执行模式限制了更广泛应用。 3. 问题点:命令式的“指令执行”模式忽略了 AI 在创意激发和解决问题中的潜力,局限于简单代码生成,未能在设计优化、逻辑推理和需求分析等方面发挥作用。 4. 输出方式的局限:交互方式主要以文本和代码为主,输出局限在“写”层面,存在交互效率低下、表达能力受限、认知负担重和应用场景局限等问题。例如,用户需大量文字表达需求,AI 解释结果冗长,多轮反复才能达成共识;在设计方案等场景中,图形图表表达更优;人类处理图形信息效率高于文本;纯文本输出无法满足原型设计等领域实际需求。
2025-03-22
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
大模型的局限性
大模型存在以下局限性: 1. 知识的局限性:模型自身的知识完全源于训练数据,现有的主流大模型(如 ChatGPT、文心一言、通义千问等)的训练集基本抓取网络公开数据用于训练,对于一些实时性、非公开或离线的数据无法获取,导致部分知识缺失。 2. 幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙,因此存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。 3. 数据安全性:对于企业来说,数据安全至关重要,企业通常不愿意承担将自身私域数据上传第三方平台进行训练导致的数据泄露风险。 4. 在图灵测试游戏中,如果 AI 模型没有调用工作流,Agent 就会直接回答问题,导致游戏状态无法正确跳转,对局失败。为解决此问题,虽采取了增强模型调用能力和增加容错机制等措施,但开发难度大,且只要大模型不调用工作流一次,后续不调用的概率会很大。模型总会优先调用知识库进行问题回复,不设置知识库时,模型提的问题可能很发散,与图灵测试初衷违背。把知识库中的数据放到代码里虽可缓解问题,但反程序设计的解耦和逻辑,修改麻烦。
2024-12-11
文心一言的开发公司是谁,功能特点,优势性和局限性请帮我简要概括
文心一言是由百度开发的全新一代知识增强大语言模型。 功能特点: 在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。 在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。 各项能力表现均衡且大部分能力水平较高。 能力栈广泛,可应用场景较多,重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 优势: 能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。 局限性: 从某些测试和感觉来看,其能力水平可能在 GPT3 的阶段,输出内容的可靠性与 ChatGPT 相比还有差距。
2024-11-22
对于在电力设计院工作的人员有什么推荐的AI网站或工具吗,我想到的可能的场景包括写文档、编程、画设计图、三维模型渲染等,可不局限于这些场景
以下是为在电力设计院工作的人员推荐的一些 AI 网站和工具: 1. 对于画 CAD 图: CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 Autodesk Fusion 360:是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂的几何形状和优化设计。 nTopology:基于 AI 的设计软件,可帮助创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 2. 对于制作网站: 在选择工具时,需考虑目标和需求(如个人博客、商业网站、在线商店等)、预算、易用性、自定义选项以及支持和资源(如教程、社区论坛)等因素。 3. 对于审核规划平面图: HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有探索,能根据输入的房间面积需求和土地约束自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入相关标准和规范约束设计结果。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些 AI 工具来提高效率。以上内容由 AI 大模型生成,请仔细甄别。
2024-09-09
RAG的局限
RAG 技术存在以下局限性: 1. 知识领域方面:适合打造专才,不适合打造通才。能够提供新的信息、专有领域知识等,但不适合提供通用领域知识。 2. 模型输出方面:让模型保持稳定的风格或结构输出,降低 token 消耗等,这两点需要使用微调技术解决。 3. 检索质量方面:RAG 技术的表现高度依赖于检索到的信息质量。如果知识库中的信息存在错误或偏差,生成内容也可能受其影响。 4. 资源需求方面:计算资源需求较高,可能限制其在资源有限的场景中的应用。 5. 处理速度方面:由于需要先进行信息检索,再进行内容生成,处理速度相对较慢,可能不适合实时性要求高的应用。 6. 可能引入错误和幻觉:例如检索出不相关或不准确的文本片段,或者生成与输入或上下文不一致的输出。
2024-08-29
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
我应该如何开始0-1学习AI绘画?当前最好用的工具是什么?
以下是一些关于 0 1 学习 AI 绘画的建议和当前好用的工具: 您可以通过观看相关视频教程来入门,比如: “10 分钟教会你如何手把手撰写提示语,全网最细 ChatGPT 对话指南,保姆级教程!” ,视频使用到的 AI 工具包括 AI 提示语,平台链接: 。 “零基础 AI 绘画入门,Midjourney、Stable Diffusion,小白速成,一站式使用和最强入门教程” ,视频使用到的 AI 工具包括 AI 提示语,一个无需魔法上网的 AI 绘画工具,平台链接: 。 目前,Midjourney 和 Stable Diffusion 是比较受欢迎的 AI 绘画工具。
2025-04-10
当前所有大模型的能力排行
目前大模型的能力排行情况较为复杂,以下为您提供部分相关信息: 8 月正式上线的国内大模型包括北京的百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ ,上海的商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 。在聊天状态下,能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax ;目前不能进行自然语言交流的有昇思、书生;受限制使用的有 MiniMax 。特色功能方面,昇思能生图,MiniMax 能语音合成。阿里通义千问、360 智脑、讯飞星火等不在首批获批名单中,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 2023 年度中文大模型基准测评报告显示,在语言与知识的测评中,GPT4 Turbo 依然领先,是唯一超过 90 分的大模型。国内大模型也表现相对较好,有 14 个模型的得分高于 GPT3.5,有 9 个模型的得分高于 GeminiPro。其中 OPPO 的 AndesGPT、阿里云的通义千问 2.0、月之暗面的 Moonshot 分列国内 13 位,较为接近 GPT4。在开源模型中,零一万物的 Yi34BChat、阿里云的 Qwen72BChat、百川智能的 Baichuan213BChat 取得了不错的成绩,均超过了 50 分,分列国内模型的 13 名。总体来看,在中文语言与知识能力上,国内大模型已基本追赶上国外头部大模型。 关于大模型的评测榜单还有: Open LLM Leaderboard:地址 ,由 HuggingFace 组织,目前已评估了较多主流的开源 LLM 模型,评估主要包括 AI2 Reasoning Challenge,HellaSwag,MMLU,TruthfulQA 四个数据集上的表现,主要以英文为主。 chinesellmbenchmark:地址 ,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b 等开源大模型,多维度能力评测,不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 SafetyPrompts:地址 ,由清华大学提出,是一个关于 LLM 安全评测 benchmark,包括安全评测平台等,用于评测和提升大模型的安全性,囊括了多种典型的安全场景和指令攻击的 prompt。
2025-03-28
当前效果比较好的对口型,换脸,配音AI应用
以下是一些效果较好的对口型、换脸、配音的 AI 应用: Runway:网址为 https://runwayml.com ,有网页和 app 方便使用。工具教程: 即梦:网址为 https://dreamina.jianying.com/ ,是剪映旗下产品,生成 3 秒,动作幅度有很大升级,有最新 S 模型和 P 模型。工具教程: Minimax 海螺 AI:网址为 https://hailuoai.video/ ,非常听话,语义理解能力非常强。视频模型: Kling:网址为 kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:网址为 https://www.vidu.studio/ haiper:网址为 https://app.haiper.ai/ Pika:网址为 https://pika.art/ ,可控性强,可以对嘴型,可配音。工具教程: 智谱清影:网址为 https://chatglm.cn/video ,开源了,可以自己部署 cogvideo。工具教程: PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。工具教程: 通义万相:网址为 https://tongyi.aliyun.com/wanxiang/ ,大幅度运动很强。 luma:网址为 https://lumalabs.ai/ 即梦 AI 对口型的相关教程: 功能介绍:「对口型」是即梦 AI「视频生成」中的二次编辑功能,现支持中文、英文配音。目前主要针对写实/偏真实风格化人物的口型及配音生成,为用户的创作提供更多视听信息传达的能力。可上传包含完整人物面容的图片,进行视频生成,待视频生成完成后,点击预览视频下的「对口型」按钮,输入台词并选择音色,或上传配音文件进行对口型效果生成。目前支持语言:中文(全部音色),英文(推荐「超拟真」内的音色) 技巧:上传写实/近写实的人物单人图片,目前不支持多人物图片对口型;输入 prompt,选择参数,点击生成视频,尽量确保人物无形变等扭曲效果;确保人物生成的情绪与希望匹配的口型内容匹配;在生成的视频下方,点击【对口型】;输入或上传需要配音的内容,注意视频生成时长和配音试听时长尽量对齐,点击生成。先对口型,再超分补帧 关于 AI 短片的相关信息: AI 图片与视频生成的新能力与应用: 图片编辑功能:Midjourney 新增本地图片上传编辑入口,可进行局部重绘、扩图和风格转换等操作。 视频生成模型:解梦新出 p 模型和 s 模型,p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 特效玩法:皮卡和 Pixforce 有特效玩法,如人物爆炸、漂浮等,可用于优化视频效果。 视频转会:Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 视频生成中的角色生视频技术: 角色生视频突破关键帧限制:当前视频生成多依赖关键帧,而角色生视频不再是关键帧输入,而是直接传入角色本身,可更灵活生成视频,如让小男孩从左跑到右。 多角色参考生成创意视频:支持上传多张图,最多三张,可将人物、衣服、背景等元素融合生成视频,如小男孩穿裙子在宇宙飞。 角色对口型技术:如吉梦的对口型技术,支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 不同工具的角色生视频效果:对比了吉梦、Runway 等工具的角色生视频效果,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景:可用于规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。 角色生视频的未来发展:未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。
2025-03-25
transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展
Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。 世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。
2025-03-16
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14