Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

LLM最大的价值是什么

Answer

LLM 具有以下重要价值:

  1. 作为 LangChain 平台与各种大模型交互的核心模型,是一个能处理语言输入和输出的抽象概念,开发者无需关心大模型细节,只关注语言逻辑和意义,就能利用其能力构建应用,还能灵活选择和切换大模型,甚至自行封装实现特定语言逻辑和功能。
  2. 能够强化人类既有的能力,未来可能促使每个人成为全栈人员,并重新划分岗位,关键在于对 LLM、自身技能和业务应用的理解。
  3. 具有知识获取能力,通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。
  4. 擅长解析人类语言指令,精准理解用户语言表达意图。
  5. 具备泛化能力,在未见过的数据上表现良好,能利用先前知识处理新挑战。
  6. 能够进行逻辑推理和未来预测,在复杂动态环境中做出理性选择并引导行动。
  7. 拥有强大的交互能力,在多人多轮次对话中自然流畅交流,改善用户体验。
  8. 可以基于用户反馈和效果评估进行自我改进,逐渐提升性能和准确性。
  9. 具有可扩展性,能根据具体需求定制化适配,通过微调提高特定领域处理能力和专业化水平。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:LangChain大模型应用开发指南-封装自己的LLM

原创AI小智AI小智2023-12-07 08:10发表于湖北在之前的课程中,我带领小伙伴们使用开源项目实现了将星火模型的OpenAI-API接口适配转换封装,没有看过的小伙伴可以点击链接查看:[AI课程合集](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzg2ODA5NTM1OA==&action=getalbum&album_id=3115055723522015235#wechat_redirect)但是这种做法的局限性也很强,只能使用开源项目适配过的大模型,并且由于多了一层适配代理,接口的性能也存在一定损耗。今天,我将给大家介绍一个更加通用的方案,基于LangChain()平台提供的LLM基础模型,完成任意模型接口的封装。[heading2]LangChain与大模型交互的核心模型-LLM[content]LLM(语言逻辑模型)是LangChain平台与各种大模型进行交互的核心模型,它是一个抽象的概念,可以理解为一个能够处理语言输入和输出的黑盒。LLM的输入是一个字符串,表示用户的请求或问题,LLM的输出也是一个字符串,表示模型的回答或结果。LLM可以根据不同的输入,调用不同的大模型,来完成不同的语言任务,如文本生成、文本理解、文本翻译等。LLM的优势在于,它可以让开发者无需关心大模型的细节和复杂性,只需要关注语言的逻辑和意义,就可以利用大模型的能力来构建自己的应用。LLM也可以让开发者灵活地选择和切换不同的大模型,而无需修改代码或适配接口。LLM还可以让开发者自己封装自己的LLM,来实现自己的语言逻辑和功能。

用魔法强化自己-使用大模型辅助论文学习

作者:[叶兀](https://www.zhihu.com/people/ljyduke)爱丁堡大学人工智能硕士原文:https://zhuanlan.zhihu.com/p/679670110[heading2]背景[content]当LLM出现之后,我认为它最大的能力便是强化人类既有的能力。未来的一种可能分工是,每一个人都是一名全栈,并不单指工程师,是全岗位,而在这个基础上再重新划分岗位,此时考究的是对LLM的理解、自身技能的理解、对业务应用的理解。Anyway,本次在Kimi Chat的帮助下,利用gitpage、github action、gitee、Yi模型([零一万物](https://link.zhihu.com/?target=https%3A//www.lingyiwanwu.com/))和百度千帆完成了一个供我个人使用的在线论文集合,关键是全免费!github:[https://dukeenglish.github.io/papertutor/](https://link.zhihu.com/?target=https%3A//dukeenglish.github.io/papertutor/)(欢迎star、fork打造自己专属的论文推荐、理解站点)gitee:[https://gitee.com/dukeenglish/PaperTutor/blob/main/docs/papers.md](https://link.zhihu.com/?target=https%3A//gitee.com/dukeenglish/PaperTutor/blob/main/docs/papers.md)

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

1.知识获取能力:LLM(例如GPT或BERT)通过预训练学习了大量的语言数据。这意味着这些模型已经掌握了大量的语言信息和常识知识。由于预训练数据涵盖了从书籍、新闻文章到互联网上的各种文本,LLM能够理解和处理多种任务。无论是日常生活的常见问题还是专业知识,LLM都能够从中汲取足够的知识基础来进行有效的处理和输出。2.指令理解:LLM擅长解析人类的语言指令。无论是简洁的命令还是复杂的句子,LLM都能够理解这些指令的真实含义,并据此作出相应的回应。它们通常采用深度神经网络进行自然语言理解和生成,从而能够精准理解用户的语言表达意图。3.泛化能力:泛化能力指的是在未见过的数据上表现良好,即使遇到未曾明确训练过的任务,LLM也可以利用先前学到的知识处理新的挑战。它们通过大量训练样本形成了对语言结构的通用理解,可以应用于各种未曾预料的情境。4.推理和规划:LLM能够进行逻辑推理和未来预测。这意味着它们可以通过分析当前条件来预测结果,或是基于现有数据来制定下一步行动的最佳方案。这种能力允许Agent在复杂动态环境中做出理性的选择并引导行动。5.交互能力:LLM拥有强大的对话能力,能够在多人多轮次对话中自然流畅地进行沟通交流。这种特性对于构建实用性强的操作界面至关重要,可以显著改善用户体验。6.自我改进:基于用户的使用反馈和实际效果评估,LLM可以通过调整参数、更新算法等方式逐渐提升自身性能和准确性,这一过程称为自我改进。随着时间推移,Agent会变得越来越“聪明”,更好地满足用户需求。7.可扩展性:可扩展性意味着LLM可以根据具体需求进行定制化适配。通过针对某一领域或某种任务的数据进行微调,LLM可以显著提高在特定领域的处理能力和专业化水平。

Others are asking
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
在汉语言文学师范领域中是否存在具有商业价值的问题,利用 AI 技术进行市场调研和分析,探索可能的创业方向
在汉语言文学师范领域,利用 AI 技术进行市场调研和分析是有可能发现具有商业价值的问题和创业方向的。 首先,通过对教育市场的大数据分析,AI 可以帮助了解汉语言文学师范专业的就业趋势和需求变化,例如特定地区对该专业教师的需求增长情况,或者新兴教育模式对该专业人才培养的新要求。 其次,利用自然语言处理技术,分析学生和家长对汉语言文学师范教育的反馈和期望,从而发现潜在的教育服务需求,比如个性化的辅导课程、线上教学平台的优化等。 再者,借助 AI 预测模型,可以评估汉语言文学师范相关教材和教育资源的市场需求,为开发创新的教育产品提供依据。 总之,结合 AI 技术,在汉语言文学师范领域进行深入的市场调研和分析,有机会挖掘出具有商业潜力的问题和创业方向。
2025-02-27
waytoagi最有价值的是什么
WaytoAGI 最有价值的方面包括: 1. 了解最新的 AI 技术:它如同免费的“技术期刊”,能让人知晓世界最新的 AI 技术动态,还能传授实用技能,并且开源免费。 2. 线上共学与手把手教学:无论基础如何,都能通过线上共学方式找到适合自己的学习路径,学会应用 AI 技术。 3. 找到志同道合的队友:对于想创业、做副业或找对 AI 感兴趣的伙伴一起做事的人来说,是很好的平台。 4. 收获众多:如实现 AI 自动化、找到副业和创业伙伴、与高手和大佬面对面交流避免走弯路等。 5. 促进个人成长:线下活动让人了解最新的 AI 落地应用现状,结识有趣、有想法的人,让人意识到要多与人交流、体验真实生活才能成长。 6. 知识学习:能学到很多 AI 相关知识,如 markdown 语言等。 7. 开源知识库:由热爱 AI 的专家和爱好者共同建设,在无推广情况下已有超 70 万用户和超千万次访问量,是很多 AI 爱好者知识的源头,有很多学社和共学共建活动。
2025-02-26
对manus启发最大的论文
以下是对 Manus 启发较大的两篇论文: 1. 《MCP 协议详解:复刻 Manus 全靠它,为什么说 MCP 是 Agent 进化的一大步?》(https://waytoagi.feishu.cn/wiki/RwIBwXlkUiSHKzk3p9UciZ8vnOf?useEs6=0&from=wiki):该论文聚焦于智能体技术的最新风口,深入剖析了 MCP 协议如何重构 AI 与工具、数据交互的方式,使 AI 真正“动起来”。通过一次搭建、无限扩展的设计理念,极大简化了 AI 助手与外部系统的对接流程,为 AI 生态搭建出高效、安全、灵活的通用接口。 2. 《屏蔽噪音,Manus 给我的 3 个启发》(https://mp.weixin.qq.com/s/s_ccBArUBKepgRNkewhx7Q):本文探讨了 AI 产品 Manus 给产品经理的三大启发,包括展示过程、允许干预,确保用户理解 AI 的操作与结果;信任机器,减少人为干预,让 AI 自行探索与生成任务;关注用户体验,特别是付费用户对效果的期待。
2025-03-21
如何最大程度的利用自己的PPT,然后使用AI 来优化它?
以下是最大程度利用自己的 PPT 并使用 AI 来优化的方法: 1. AI 生成 PPT 的主要思路: 以爱设计为例,导入大纲到工具生成 PPT。其他工具操作方式大同小异,都是基于 Markdown 语法的内容来完成 PPT 的生成。具体步骤可移步到 MindShow、闪击、爱设计等章节。 优化整体结构,按照公司要求自行优化字体、图片等元素。针对下载后的 PPT,可以删改内容以达到心理预期。 2. 参考案例:卓 sir 利用 AI 完成 PPT 作业,虽然探索写 prompt 花了不少时间,但最终成功完成,包括大纲内容、排版、动画等,感觉良好。 3. 好用的 AI PPT 工具: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。https://zhiwen.xfyun.cn/
2025-02-26
我是一名高中物理教师,怎样才能得到ai最大化的帮助
以下是一些高中物理教师可能获得 AI 最大化帮助的途径: 1. 利用 AI 提供代码帮助,例如在使用特定计算语言(如 Wolfram 语言)表达教学内容时,从非正式概念转变为明确的计算语言。 2. 参考关于教师使用 AI 的小技巧,例如在生成教学相关的各种材料(如教案、课程计划、大单元教学计划等)时,借助 AI 提高效率和质量。 3. 探索人机智慧学习协作框架,以更好地将 AI 融入教学过程。 但需要注意的是,目前关于 AI 在科学领域的文献研究还不够系统,其在教学中的应用也有待进一步探索和完善。
2025-02-13
我是一名主要服务于企业的律师,怎样才能得到ai最大化的帮助
作为服务于企业的律师,要得到 AI 最大化的帮助,可以从以下几个方面入手: 律师的优势: 1. 具备深厚的法律专业知识,能提供专业的法律分析和建议。 2. 在沟通和谈判中能够与各方建立信任、表达观点、促成交易等。 3. 能够针对新兴行业或监管空白提出合规建议。 4. 作为专业人士,在危机应对时能在紧急情况下做出专业判断,提供及时的法律建议和解决方案。 律师的不足: 1. 处理大量信息和数据时人工效率有限,如大量文件调查中的数据提取和整理。 2. 处理细节方面可能难以记住各类案件中的所有事实和细节,尤其在复杂案件中。 3. 在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。 AI 的优势: 1. 信息检索与整理:能迅速从大量数据中检索相关信息,提取和整理案件相关资料。 2. 模式识别与预测:通过导入历史数据和参考信息,设定指令,可以预测案件的可能结果,辅助制定诉讼策略。 3. 自动化文档处理:能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。 4. 多任务处理能力:可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。 AI 的不足: 1. 法律解释与推理:难以像专业的法律人一样,推演复杂的法律解释和论证。特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时,能力非常有限。 2. 理解道德和情感:难以理解案件中涉及的复杂情感和动机。 3. 创新或个性化的服务:难以提供客户的综合性需求来提供个性化的法律服务,因为大模型是基于预设的数据和规则,不能及时采集到客户所有的即时信息,很难超出语料的内容生成创新且专业的答案,因此很难针对性地为客户提供专业服务。 律师与 AI 协同的关键在于:根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。例如,在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。给出类似“根据提供的模板,自动生成一份关于 XX 事项的合同草案,并标注出需要人工审核的关键条款”的 prompt。 同时,要认识到 AI 存在一定的“不稳定性”,不能期待设计一个完美的提示词就能得到完美答案,提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在与 AI 的对话中产生,并且在对话中限缩自己思维中的模糊地带。
2025-02-13
AI对哪些职业影响最大
以下是一些受到 AI 影响较大的职业: 1. 编程领域:传统的程序员岗位面临巨大挑战,如软件工程和算法开发等领域,随着 AI 的进步,可能会有更多程序员岗位被自动化技术取代。 2. 高薪工作:OpenAI 和宾夕法尼亚大学 Eloundou 等人的研究发现,生成式 AI 对高薪工作的影响更大。 3. 商业和社会中的一些职能角色: 软件工程师:负责编写软件应用程序并确保稳健运行。 机器学习工程师:负责实现人工智能,熟悉大模型、RAG、finetuning。 产品经理:负责识别和界定项目,确保项目对用户有用。 提示词工程师:被认为是炒作的职位,实际可能担任了机器学习工程师的部分职责。 其他岗位如数据工程师、数据科学家、项目主管、机器学习研究员等。 4. 销售、市场营销、用户运营、客户服务等岗位:麦肯锡研究了这些岗位将受到 AI 的影响。 5. 知识型工作:生成式 AI 将会对知识型工作产生更大的影响。 需要注意的是,虽然某些职业受到较大影响,但劳动力可能不容易被完全取代,更专业的服务将加速出现,熟练 AI 的专业人员能够产生高附加值。
2025-01-04
怎么最大限度使用chatgpt
以下是关于如何最大限度使用 ChatGPT 的一些方法和建议: 1. 产品经理使用方法: 需求及现状问题输入:在完成原 SQL 输入后,将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知。 根据优化结果不断调试:输入旧代码、需求和问题后,根据 ChatGPT 给出的新代码不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在资源浪费,通过与 ChatGPT 沟通得到优化建议,包括每次更新 1 天数据、创建中间结果表存储非二次计算数据、利用 CASE WHEN 合并查询约束条件基本相同的指标等。 2. 学习相关技巧: Prompt 有效并非因其理解想法:ChatGPT 只是预测下一个 Token,目前主要专注于文本输出,尚未具备与外部系统直接交互的能力,应用范围存在限制。 让效果更好的方法:使用搜索引擎时,通过精确描述问题可获得更高质量答案。激活更多神经元能增加获得高质量答案的可能性。 3. 写好提示词的技巧: 放开思路,激发更多想法。 采用 PUA 方式,如在回答后换话术继续引导,可适当鼓励但也要提出更高要求。考验创造力,未来想象很重要。
2024-12-09