Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 评估 GPU 大模型的性能指标,包括输入 token 和输出 token 能力的区分。

Answer

以下是关于 AI 评估 GPU 大模型性能指标中输入 token 和输出 token 能力区分的相关内容:

大模型是通过输入大量语料进行训练,从而获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。在大模型的训练和使用过程中:

  1. 训练需要大量计算,GPU 更合适,只有具备大量 GPU 的才有资本训练大模型。
  2. 大模型需要大量数据量,几千亿序列(Token)的输入基本是标配。
  3. 要用合适的算法让大模型更好理解 Token 之间的关系。
  4. 为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 完成上述步骤后,大模型就可以进行如翻译、问答等推导(infer)工作。

Token 是大模型语言体系中的最小单元,人类语言发送给大模型时,会先转换为其自身语言,推理生成答案后再翻译输出。不同厂商的大模型对中文的文本切分方法不同,通常 1Token 约等于 1 - 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,都是以 token 为单位计量的。

在评估 GPU 大模型性能时,显卡的常规指标很重要。大部分模型默认采用 FP16 的加载方式,因此显卡的性能指标主要关注 FP16 的算力和显存大小。算力影响推理速度,包括输入数据处理和持续吐出数据的速度,会体现在从提示词输入后到第一个输出的 token 的等待时间间隔,以及流式输出下每秒吐字的字数,通常每秒 10 token 以上能获得较好的用户体验。显存大小影响能否装载模型,可通过“参数大小乘 2”简化判断所需显存大小,但实际显存需求还会受其他因素影响。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行?Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

推理用GPU选购指北

购买GPU实体卡,或者云GPU资源必读。[heading2]显卡的常规指标[content]大部分模型默认采用FP16的加载方式。因此显卡的性能指标主要关注FP16的算力,和显存大小。算力通常影响推理速度,包含输入数据的处理,和持续吐出数据的速度。在LLM的运算中,运算速度会很直观的体现在用户体验上:从提示词输入后到第一个输出的token的等待时间间隔,和流式输出下每秒吐字的字数。--通常流式吐字需要在每秒10 token以上能获得还能过得去的用户体验。显存大小直接影响了你是否能装载模型。在开源模型的说明书上通常都会说明转载所需的显存大小。所需显存大小也可以通过简单的“参数大小乘2”计算来简化判断,例如:chatglm3-6B,至少需要6*2=12G的显存资源。实际显存需求当然还会受其他的影响,比如token计算过程中波动的显存量。因此如前例中,chatglm3-6b通常需要有16G甚至24G的显存,如果仅有12G显存,会很快出现OoM的问题。

Others are asking
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
在AI生成中,1token大约是多少字符?
在 AI 生成中,对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,通常情况下 1 Token 约等于 1 2 个汉字。在 ChatGPT 4 中,“Learning AI Meticulously,Sharing Knowledge Joyfully”这句话被视为 10 个 Token,标点符号单独计算,“Joyfully”被拆分成“Joy”和“fully”。您可以查看 OpenAI 的分词器工具来了解更多关于文本如何转换为 Token 的信息。
2025-03-18
token是什么
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 token 可能代表一个字、一个词或一个句子。在英文中,一个 token 通常是一个词或标点符号;在一些汉语处理系统中,一个 token 可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 tokens。这些 tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 token 会关联一个预测,这个预测可以是下一个 token 的预测,也可以是该 token 的属性预测,如词性、情感等。 训练 token 的数量会影响模型的性能和准确性。更多的训练 token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 token 也会增加计算的复杂性和计算资源的需求。 很多同学把 token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“token”不仅代表文本数据中的一个单位,而且每个“token”都可能携带了丰富的语义信息。比如,在处理一句话时,“token”可能表示一个字、一个词甚至一个短语,同时,每个“token”在模型中都有一个对应的向量表示,这个向量包含了该“token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。GPT 的输入和输出都是一个个的 token,GPT 适用于几乎所有流行的自然语言,其 token 需要兼容几乎人类的所有自然语言,通过 unicode 编码来实现这个目的。
2025-03-13
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
长token处理
以下是关于长 token 处理的相关信息: 通义千问方面: 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。 在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。 对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 OpenAI API 方面: 模型通过将文本分解为标记(Token)来理解和处理文本,Token 可以是单词,也可以是字符块。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。 给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词),可查看分词器工具了解更多信息。
2025-03-07
token与参数的关系
Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。 目前使用的大模型存在 token 限制,如 Claude2100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT432k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。 在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。 为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。
2025-03-06
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
ai为何使用GPU而不是CPU
AI 使用 GPU 而不是 CPU 主要有以下原因: 1. 强大的计算能力:GPU 在并行处理大量数据方面具有显著优势。例如,同年《Largescale Deep Unsupervised Learning using Graphics Processors》这篇论文指出,利用 GPU 比 CPU 快 70 倍,能将数周的工作压缩到几天甚至一天完成。 2. 适应深度学习需求:大型神经网络、输入的多个变量以及有效的反向传播 GPU 实现等方面,GPU 表现出色。如 MNIST 数据库能达到令人惊叹的 0.35%错误率。 3. 处理图形相关运算:GPU 原本就是为处理图像和图形相关运算工作而设计,其采用的核心技术如硬件 T&L 等,适合 AI 中的图形处理任务。 4. 分担 CPU 工作:GPU 的诞生源自对 CPU 的减负,使显卡减少对 CPU 的依赖,并进行部分原本 CPU 的工作。 5. 算力优势:算力可以直接转化为 GPU,一张显卡中的 GPU 是计算能力的关键。 6. 适应 AI 模型需求:当今所有 AI 模型都在使用大量专用芯片的 GPU 卡上运行。例如 NVIDIA A100 GPU 有 512 个“张量核心”,能大幅提高计算效率。但实际应用中,也存在一些限制,如数据传输、内存容量和优化方法等问题。
2025-02-14
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU
以下是对您所遇到的报错“RuntimeError: All input tensors need to be on the same GPU, but found some tensors to not be on a GPU”的一些可能的解决方案: 1. 检查您的代码和模型设置,确保所有输入张量都被正确地分配到同一个 GPU 上。 2. 对于与显存相关的问题,如爆显存的情况,在训练时可以尝试调小批量大小,在推理时可以使用强制切片。 3. 调大虚拟内存,可能有助于解决一些与内存相关的报错。 同时,在处理与 AI 相关的报错时,还可能会遇到其他类似的问题,例如: 1. 页面文件太小,无法完成操作。解决方法是增大系统虚拟内存大小。 2. 出现“torch.cuda.OutOfMemoryError: CUDA out of memory”报错,通常是爆显存了。 3. 遇到“DataLoader workerexited unexpectedly”报错,可把虚拟内存再调大一点。 4. “CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling 'cublasCreate'”报错,一般也是爆显存。 5. “'HParams' object has no attribute 'xxx'”报错,可能是无法找到音色,一般是配置文件和模型没对应,打开配置文件拉到最下面查看是否有训练的音色。 6. “The expand size of the tensor at nonsingleton dimension 0”报错,可把 dataset/44k 下的内容全部删除,重新走一遍预处理流程。 7. “Given groups=1, weight of size to have 256 channels, but got 768 channels instead”报错,可能是 vec256 的模型用了 vec768 的配置文件,反之亦然,请参考旧模型兼容,确认配置文件和模型维度对应。 8. “配置文件中的编码器与模型维度不匹配”报错,可能是在修改配置文件中的“speech_encoder”时修改错了,检查配置文件中的“ssl_dim”一项,如果这项是 256,那您需要确认配置文件和模型维度的对应关系。
2025-01-17
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在选择 GPU 作为 AI 基础设施时,需要考虑多个因素: 训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。 内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。 硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。 延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。 峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。 此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用游戏用的 GPU 能使运算速度提高 30 倍。 6. 随着 AI 领域的发展而不断发展,例如在训练神经网络方面发挥重要作用。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
大模型 关键性能指标
对比不同大模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:测试处理未见过任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等量化比较。 例如,通义千问开源的 Qwen2.51M 大模型,推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息。 Google DeepMind 的 Gemini 2.0 Flash 多模态大模型支持图像、视频、音频等多模态输入,可生成图文混合内容和多语言 TTS 音频。模型原生支持 Google 搜索、代码执行及第三方 API 调用等工具链能力,处理速度较 Gemini 1.5 Pro 提升一倍,关键性能指标已超越前代产品。作为 Gemini 2.0 系列首发模型,在多模态理解与生成方面实现重要突破。产品入口目前通过 Google AI Studio 和 Vertex AI 平台提供实验版 API 接口,预计 2025 年 1 月起全面商用,并将陆续发布 Gemini 2.0 系列其他版本。
2025-03-24
(二) 性能指标(包括服务性能指标、网络性能指标、云性能指标)
对比不同大语言模型的性能需要从多个维度进行考量,具体包括: 1. 理解能力:评估模型对语言的理解程度,涵盖语法、语义、上下文及隐含意义的理解。 2. 生成质量:检查生成文本的质量,如流畅性、相关性和准确性。 3. 知识广度和深度:衡量模型对广泛主题的知识掌握情况,以及对特定领域或话题的理解深度。 4. 泛化能力:测试模型处理未见过任务或数据时的表现,反映其泛化能力。 5. 鲁棒性:查看模型对错误输入、对抗性输入或模糊指令的应对能力。 6. 偏见和伦理:评估生成文本是否存在偏见,以及是否遵循伦理标准。 7. 交互性和适应性:评估在交互环境中的表现,包括对用户反馈的适应性和持续对话能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:评估是否易于集成到不同应用和服务中,以及提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用标准的语言模型评估基准,如 GLUE、SuperGLUE、SQuAD 等,这些基准提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用包括准确率、召回率、F1 分数、BLEU 分数等在内的性能指标来量化比较。
2024-12-26