Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能的发展历史及各个阶段起到关键作用的重大突破

Answer

人工智能的发展历史可以追溯到 20 世纪 50 年代,以下是各个阶段起到关键作用的重大突破:

  1. 20 世纪 50 年代:
    • 纽维尔和西蒙开发了名为“逻辑理论家”的程序,能够证明数学定理,此后又开发了“通用问题求解器”。意义:作为符号学派的代表,为形式化证明打开了大门。
    • 英国数学家阿兰·图灵提出了著名的“图灵测试”。
  2. 20 世纪 60 年代:
    • 美国心理学家弗兰克·罗森布拉特提出了感知机模型,这是一种具有学习能力的神经网络。意义:开创了连接主义学派,为 DNN 学习范式开启了窗口。
  3. 1971 年到 2015 年间,与电子游戏相关的人工智能研究论文数量不到 1000 篇,但从 2015 年到 2022 年的 7 年里,相关论文数量就达到 1625 篇,其中 17 篇成为《自然》和《科学》的封面文章。
  4. 1997 年:“深蓝”电脑在国际象棋比赛中战胜世界冠军卡斯帕罗夫。
  5. 2016 年:AlphaGo 在围棋比赛中战胜世界冠军李世石。
  6. 2020 年:GPT-3 发布,非常擅长用电脑写文章和做其他很多用语言的事情。
  7. 2022 年:DALL-E 发布,可以根据描述画出想象中的图画。
  8. 2023 年:GPT-4 发布。

在快速发展的过程中,众多巨人开创了具有重大意义的里程碑事件,推动了人工智能的不断进步。

Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

在近现代几十年中,人工智能发展迅猛,从1950年英国数学家阿兰·图灵(Alan Turing)提出了著名的“图灵测试”算起,到1956年的达特茅斯会议,从符号主义学派的专家系统到链接主义学派的感知机和神经网络,从深度学习的高速发展到当前的大语言模型的爆发式发展,在这短短几十年之间,人工智能发展经历的三起二落,以及技术突破所带来的阶段性不同程度的爆发。在快速发展的过程中,我们当然也无法遗忘在过程中众多巨人所为未来开创的具有重大意义的里程碑事件。在这里我试图列举几个我认为为当下人工智能发展带来重大意义的事件和技术:1、20世纪50年代,纽维尔和西蒙开发了一个名为“逻辑理论家”(Logic Theorist)的程序,该程序能够证明数学定理。此后,他们又开发了“通用问题求解器”,用于解决各种问题。意义:符号学派的代表,其开发的“逻辑理论家”(Logic Theorist)的程序,在当时为形式化证明打开了一扇大门,70年后我们发现,当前LLM在尝试进行的复杂数学定理证明是否又能与其建立某种更深层次的联系?2、20世纪60年代,美国心理学家弗兰克·罗森布拉特提出了感知机模型,这是一种具有学习能力的神经网络。意义:连接主义学派的开创,为DNN这一意义深远的学习范式开启那扇窗。3、AlexNet意义:AlexNet的出现标志着神经网络的复苏和深度学习的崛起。4、AlphaGO战胜李世石意义:在围棋这一复杂领域AI第一次战胜人类,神来之笔37步,也预示着在其它的复杂领域上AI在与人类的智能对比的进一步突破的可能

当AI走进小学课堂(全套课程设计)

1956年人工智能被提出1997年深蓝击败卡斯帕罗夫2016年AlphaGo击败李世石2020年GPT-3的发布2022年DALL-E的发布2023年GPT-4的发布2024年即将发布GPT-5说明:这里未来可以改进一下,当时匆忙只写了语言模型和DALL-E,绘图的SD和Midjourney等我都没写进去,已经新出的视频和音乐创作工具等,都可以往上写,但也不用太多。只需要让孩子理解,技术的变革已经越来越快了!内容从图灵测试之后,科学家们就开始努力让机器变得更聪明。到了1956年,人工智能这个词首次被提出,从那时起,人们就开始正式研究如何让机器像人一样思考了。重大突破1997年:有一个叫做深蓝的电脑,在国际象棋比赛中战胜了世界冠军。这是第一次机器在这样的智力游戏中击败了顶尖的人类选手。2016年:有一个更聪明的AI叫AlphaGo,它在围棋比赛中战胜了世界冠军李世石。围棋是一个非常复杂的游戏,这次胜利让全世界都很惊讶。2020年:有一个AI叫GPT-3,它非常擅长用电脑写文章和做其他很多用语言的事情。它可以帮助人们写故事、答复邮件,甚至写程序代码!2022年:还有一些AI,比如DALL-E,可以根据你告诉它的话,画出你想象中的图画。你说“一个穿宇航服的猫在月球上”,它就可以画出来!看到这些有趣的故事,你们是不是觉得人工智能非常神奇呢?从一个小小的想法发展到现在,人工智能已经能帮我们做很多事情了。那么,接下来,我们来探索一下人工智能现在都可以做些什么吧!

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

电子游戏的首次亮相,就与人工智能结下了不解之缘,并且在其各自漫长的发展史中一直相互纠缠,难解难分,直至当下。如今,游戏人工智能的研究已经成为了新的热点:据统计,1971年到2015年间,与电子游戏相关的人工智能研究论文数量不到1000篇,但从2015年到2022年的7年里,相关论文数量就达到1625,其中17篇成为《自然》(Nature)和《科学》(Science)的封面文章。游戏人工智能的发展史可以划分为起源时期(1940-1969)、发展时期(1970-1999)和黄金时期(2000-)。如今,电子游戏与人工智能相生相伴,相互助力已有70余年。电子游戏不仅帮助人工智能的先驱者们确立了研究的目标和任务,同时也向社会生动地展示了人工智能的强大能力。因此,每次人工智能在社会影响力上的突破,都与电子游戏有着莫大联系。其中的典型案例,就是20世纪末在国际象棋游戏上打败卡斯帕罗夫的Deep Blue,以及在2016年在围棋游戏上击败李世石的AlphaGo。甚至最近突破性的AI技术ChatGPT也与游戏AI存在一定关联:OpenAI联合创始人和首席科学家苏茨克维(Ilya Sutskever)在与英伟达的创始人兼CEO黄健生(Jensen Huang,中文名黄仁勋)对谈时指出,OpenAI之所以能够在ChatGPT中推出基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF),与团队在Dota2游戏人工智能上的长期研究有关。正是因为在传统的强化学习大模型中有着丰厚积累,才能够在此基础上逐步改进,将新型的强化学习方法与GPT模型结合,创造出基于提示的GPT(InstructGPT),并进一步演变为ChatGPT。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
我正在找工作,需要写简历和准备面试,什么AI软件可以对我现在的情况起到辅助作用呢?
以下是一些可以在您找工作写简历和准备面试时提供辅助的 AI 软件: 1. 写简历方面: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 2. 面试准备方面: Applicant AI:人工智能面试系统,通过 AI 视频聊天快速筛选求职者,匹配招聘标准,自动推送合适候选人至下一阶段,减少人工干预,可安排面试流程,提高招聘效率。 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障,能帮助企业完成面试,借助人岗匹配模型,自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 InterviewAI:在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 需要注意的是,使用这些产品时,要考虑到数据安全性和隐私保护的问题。
2025-03-13
coze能对电商工作起到哪些提升作用?
Coze 能对电商工作起到以下提升作用: 1. 个性化邮件发送:市场团队可以利用 Coze 的工作流,将客户名单作为输入数组,通过循环节点依次为每位客户生成定制化邮件,在几分钟内完成邮件发送,避免重复劳动。 2. 商品评价分析:运营团队能够把电商平台的商品评价数据作为输入数组,使用循环节点逐一分析,计算好评率和差评率,并生成总结报告。原本耗时 2 3 小时的人工作业可缩短到几分钟,同时避免出错。 Coze 的工作流具有以下特点: 1. 可视化:允许用户通过可视化的方式组合各种功能模块,如插件、大语言模型、代码块等,从而实现复杂和稳定的业务流程编排。 2. 低代码:工作流的创建和编辑可以通过可视化的拖拽界面完成,无需编写代码,大大降低了工作流搭建的门槛。 3. 功能丰富:支持丰富的功能模块,包括调用大语言模型进行文本生成、调用插件进行数据处理等,用户可根据需求灵活组合。 4. 集成性强:创建好的工作流可以直接集成到 Coze 的聊天机器人中使用,实现复杂的业务逻辑。 循环节点是自动化流程的重要组成部分,通常分为数组循环、指定次数循环和无限循环三种核心模式。数组循环适用于对一组有序数据逐条处理的场景,是自动化流程中最常见的一种模式,能够高效地逐条执行重复性操作。
2025-03-09
写清搭建的coze类的智能体用到了什么样的技术,难点在哪里,起到了什么样的效果,如果用类似的方法,可以完成什么样的工作。
搭建 Coze 类的智能体所用到的技术及相关情况如下: 技术:Bot 的创建部分包括 3 个自研插件及 4 个自研工作流,涉及人设与回复逻辑、变量记忆、长期记忆、数据库、开场白、用户问题建议、快捷指令、语音等功能。还包括通过 Docker 容器部署,接入如 chatgptonwechat(CoW)项目与微信取得关联。 难点:工作量最大且最具难度和挑战的部分是自研插件和工作流的搭建。 效果:实现了多模态资讯的跨平台推送。 类似方法可完成的工作:工作流驱动的 Agent 搭建,如规划任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法;实施时分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,详细配置子任务节点并验证可用性;完善时全面评估并优化 Agent 效果,通过反复测试和迭代达到预期水平。例如可以搭建“结构化外文精读专家”Agent 等。
2024-08-26