Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能

Answer

以下是关于人工智能伦理规范的相关内容:

现有规范具体内容:

  • 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。
  • 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。

现有问题: 文中未明确提及现有规范存在的具体问题。

应当如何规范:

  • 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。
  • 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。

以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。

Content generated by AI large model, please carefully verify (powered by aily)

References

国家人工智能产业综合标准化体系建设指南.pdf

人工智能行业应用重点领域包括智能制造、智能家居、智慧城市、科学智算等。1.1.智能制造标准。规范人工智能在工业领域的融合应用,围绕智能工厂、智慧供应链建设中的智能化技术要求,开展工业知识表达、工业知识图谱构建、工业场景大模型等标准研制。2.2.智能家居标准。规范家居智能硬件、智能软件、智能网联、服务平台和应用平台等技术要求,促进智能家居产品的互联互通,提升智能家居在室内环境、安防监控等场景的用户体验。3.3.智慧城市标准。规范智慧城市建设、治理、生态宜居等智能化技术要求,提升人工智能系统在城市经济发展、韧性构建、社会治理、辅助决策中的应用水平。4.4.科学智算标准。规范人工智能规模化应用加速基础科研的相关标准。结合农业、工业、服务业等应用人工智能技术的需求,加快开展智慧农业、智慧能源、智慧环保、智慧金融、智慧物流、智慧教育、智慧医疗、智慧交通、智慧文旅等领域标准研究。[heading2](六)安全/治理标准[content]安全/治理标准包括人工智能领域的安全、治理等部分。1.1.安全标准。规范人工智能技术、产品、系统、应用和服务等全生命周期的安全要求,包括基础安全,数据、算法和模型安全,网络技术和系统安全,安全管理和服务,安全测试评估,安全标注,内容标识,产品和应用安全等标准。2.2.治理标准。结合人工智能治理实际需求,规范人工智能的技术研发和运营服务等要求,包括人工智能鲁棒性、可靠性、可追溯性的技术要求与评测方法,人工智能治理支撑技术;规范人工智能全生命周期的伦理治理要求,包括人工智能伦理风险评估,人工智能的公平性、可解释性等伦理治理技术要求与评测方法,人工智能伦理审查等标准。

AI ACT 中译本.pdf

欧洲议会和欧盟理事会规定人工智能的统一规则,并修正300/2008号、167/2013号、168/2013号、2018/858号、2018/1139号和2019/214号条例以及2014/90/EU号、2016/797号和20(27)虽然基于风险的方法是一套成比例和有效的约束性规则的基础,回顾委员会任命的独立人工智能高级别专家组2019年制定的《值得信赖的人工智能的伦理准则》非常重要。在这些准则中,高级别专家组制定了七项不具约束力的人工智能伦理原则,这些原则应有助于确保人工智能是值得信赖的、符合伦理道德的。这七项原则包括:人类主体和监督;技术稳健性和安全性;隐私和数据治理;透明度;多样性、非歧视和公平;社会和环境福祉以及问责制。在不影响本条例和任何其他适用的联盟法律的法律约束力要求的前提下,这些指南有助于设计一个符合《宪章》和作为联盟基础的价值观的连贯、可信和以人为本的人工智能。根据独立人工智能高级别专家组的指南,人类主体和监督意味着人工智能系统的开发和使用是为人服务的工具,尊重人的尊严和个人自主权,其运行方式可由人类进行适当控制和监督。技术稳健性和安全性是指,开发和使用人工智能系统的方式应能在出现问题时保持稳健,并能抵御试图改变人工智能系统的使用或性能的行为,从而允许第三方非法使用,并最大限度地减少意外伤害。隐私和数据管理是指人工智能系统的开发和使用符合现有的隐私和数据保护规则,同时处理的数据在质量和完整性方面符合高标准。透明度是指人工智能系统的开发和使用方式应允许适当的可追溯性和可解释性,同时让人类意识到他们与人工智能系统进行了交流或互动,并适当告知部署者该人工智能系统的能力和局限性,以及受影响者的权利。多样性、非歧视和公平性是指人工智能系统的开发和使用方式应包括不同的参与者,并促进平等获取、性别平等和文化多样性,同时避免联盟或国家法律所禁止的歧视性影响和不公平偏见。社会和

AI ACT 中译本.pdf

欧洲议会和欧盟理事会规定人工智能的统一规则,并修正300/2008号、167/2013号、168/2013号、2018/858号、2018/1139号和2019/214号条例以及2014/90/EU号、2016/797号和20(165)按照本条例的要求开发高风险人工智能系统以外的其他人工智能系统,可能导致在欧盟更多地采用合乎道德和值得信赖的人工智能。应鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,这些要求应根据系统的预期目的和所涉及的较低风险进行调整,并考虑到可用的技术解决方案和行业最佳实践,如模型卡和数据卡。还应鼓励所有人工智能系统,无论是否高风险的提供者和模型的提供者,并酌情鼓励其部署者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求、在设计和开发人工智能系统时,酌情让利益相关方,如企业和公民社会组织、学术和研究组织、工会和消费者保护组织,参与进来,以及开发团队的多样性,包括性别平衡。为确保自愿行为守则行之有效,守则应基于明确的目标和关键绩效指标,以衡量这些目标的实现情况。在制定守则时,应酌情让有关各方参与,例如商界和公民社会组织、学术界和研究机构、工会和消费者保护组织。委员会可制定包括部门性质在内的倡议,以促进阻碍促进人工智能发展的跨境数据交换的技术壁垒的降低,包括数据访问的基础设施、不同类型数据的语义和技术的互操作性。(166)重要的是,根据本条例不属于高风险的与产品有关人工智能系统,因而不需要遵守为高风险人工智能系统规定的要求,尽管如此,在投放市场或提供服务时仍然应是安全的。为促进实现这一目标,欧洲议会和欧盟理事会2023/988号条例56将作为安全网而适用。

Others are asking
如何写出有效且规范的输入命令提示词
以下是关于如何写出有效且规范的输入命令提示词的相关内容: Claude 官方文档的提示词优化建议: 更明确地编写规则或添加新规则。 在提示词中包含明确的“输入规范输出”示例,向 Claude 展示如何正确处理。 当 Claude 在一种输入类型上表现良好时,尝试用另一种输入类型,包括边缘案例。 不断完善提示词,添加规则和示例,直至在代表性输入组上获得良好性能,并进行“保留测试”。 安迪提出的 ICIO 框架: ICIO 框架由四个关键部分构成,分别是 Instruction(指令)、Context(背景信息)、Input Data(输入数据)和 Output Indicator(输出引导)。 Instruction(指令):应简洁明了、具体详细、行动导向、专注单一任务。 Context(背景信息):包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据,并非所有任务都需要。 Output Indicator(输出引导):涵盖格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。 星流一站式 AI 设计工具中的提示词相关内容: 提示词用于描绘画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组,支持中英文输入。 写好提示词的方法: 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词,帮助 AI 理解不想生成的内容。 利用“加权重”功能,让 AI 明白重点内容。 可使用预设词组、辅助功能,如翻译、删除所有提示词、会员加速等。启用提示词优化可扩展提示词,更生动地描述画面内容。
2025-03-31
数据采集 存储规范
以下是关于数据采集和存储的规范: 风险评估:GDPR 规定数据控制者或处理者所进行的数据处理应当符合初始收集时的目的。企业在核查目标业务领域的数据使用和处理环节时,要比较数据使用和处理的目的、范围、主体等内容相对于初始收集时是否有变化。若有变化,需在使用和处理数据前对数据主体重新告知并取得合法有效同意。 遵循准确、必要、及时原则:数据处理应遵循准确、必要、及时的原则,并以相关、必要为限度。企业在核查时,要判断数据处理与收集目的的相关性、发生时间以及是否为实现收集目的所必要。 确保数据主体限制数据处理的权利:GDPR 明确数据主体有权限制数据控制者或处理者对其数据的处理活动。企业要核查是否建立特定机制或提供途径,确保数据主体在特定情形(如质疑数据准确性、数据处理非法且反对删除数据等)下可限制处理。 确保数据主体反对特定数据处理的权利:GDPR 明确数据主体有权反对数据控制者或处理者的特定数据处理活动。企业要核查是否建立特定机制或提供途径,确保数据主体在特定情形(如直接营销、数据画像等)下有权反对特定数据处理。 数据的存储:需遵循相关法规和标准进行规范存储。
2025-03-25
如何让ai帮我完成一篇查重率不高,用语严谨、有力,符合学术规范的论文
要让 AI 帮您完成一篇查重率不高、用语严谨有力且符合学术规范的论文,您可以参考以下内容: 在论文写作领域,AI 技术的应用正在迅速发展,为您提供了多方面的辅助。以下是一些常用的工具和方法: 论文写作工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助您进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 是受欢迎的选择,它们提供强大的排版功能和广泛的学术支持。对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。 使用这些工具时,重要的是结合自己的写作风格和需求,同时注意仔细甄别 AI 生成的内容。
2025-03-24
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
修改以下内容,降低论文查重率:  首先需要高层管理者的重视和支持,为社交媒体营销提供必要的资源和政策支持。其次,要加强员工培训,提高全员的社交媒体素养和营销能力。再次,要建立完善的社交媒体管理制度,规范员工行为,防范潜在风险。最后,要注重技术创新,积极应用人工智能、大数据等新技术,提高社交媒体营销的智能化水平
以下是为您修改后的内容,以降低论文查重率: 首先,高层管理者的重视与支持不可或缺,应为社交媒体营销给予必需的资源及政策支撑。其次,强化员工培训工作,提升全体员工的社交媒体素养与营销能力。再次,构建完备的社交媒体管理体制,对员工行为加以规范,预防潜在风险。最后,注重技术的创新,积极运用人工智能、大数据等新型技术,增强社交媒体营销的智能化程度。
2025-03-07
openAI关于道德规范的调整是什么
OpenAI 在道德规范方面的调整包括以下内容: 1. OpenAI 认为通过分析 ChatGPT 和 GPT4 用户对数百万条提示的反应,能获得知识以使未来的产品符合道德规范。 2. 随着公司承担更多任务并投入更多商业活动,有人质疑其在多大程度上能集中精力完成降低灭绝风险等任务。 3. OpenAI 与数以百计的内容审核员签订合同,对模型进行教育,使其了解对用户提示做出的不恰当或有害回答。 4. 山姆·奥特曼曾强调 AI 可能带来的潜在灾难,如大规模虚假信息传播、网络攻击以及威权政府滥用等,并对 OpenAI 最初的开放性承诺进行重新考虑。 5. 公司领导层认为董事会作为非营利性控制实体的一部分,将确保营收和利润的驱动力不会压倒最初的想法。但目前 OpenAI 还不清楚 AGI 到底是什么,其定义将由董事会决定。
2025-02-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
如何根据现有的合同模板搭建一个合同生成的智能体
要根据现有的合同模板搭建一个合同生成的智能体,可以参考以下步骤: 1. 创建智能体:输入人设等信息,并放上相关工作流。 2. 基础配置: 选择“Coze 变现模板(多智能体版)”并“新建项目”,可使用代金券进行抵扣。 添加智能体,获取 Coze Bot 的 ID,导入数据库后上线展示。获取 Bot ID 时,进入 Coze 智能体页面,在地址栏内复制“bot/”之后的数字,且 bot 发布时记得勾选 WEB SDK。回到模板项目,在“coze_bot”数据表中添加智能体,填写相关字段,如宣传图、智能体名称、图标、license、作者和介绍等。 3. 工作流设置: “批处理”节点:循环处理之前“文本”节点生成的文案 List,对每一句文案通过画板生图、通过插件进行语音合成。 “选择器”节点:对循环到的“这句话”进行异常处理,选择不为空的进行后续处理。 “画板”节点:是一个“白色画板”,可添加任意变量进行内容添加,点击编辑进行操作。 “语音合成”节点:输入每一句文案,选择喜欢的音色生成语音。 “图片音频合成”节点:选择合适的视频合成插件。 配置完成后,先进行测试,注意工作流中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用这个工作流会直接消耗您的 money,所以不能直接发布。您可以将 api_token 作为工作流最开始的输入,用户自己购买后,输入 api_token 就可以使用,然后再发布。
2025-04-01
我是一个ai新手,请根据知识库现有的内容帮我拟一份学校ai的学习计划,以及更新知识的跟进和学习
以下是为您拟定的学校 AI 学习计划,以及知识更新的跟进和学习方法: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 希望这份学习计划对您有所帮助,祝您在 AI 学习的道路上取得成功!
2025-03-31
我是一个产品经理,我想要绘制ai agent对现有业务流程的提升ppt,有没有一些好的案例
以下是一些关于 AI Agent 对现有业务流程提升的案例,希望对您绘制相关 PPT 有所帮助: 1. 在查询问题方面,如使用 Kimi Chat 时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子,同时 PPT 中还介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做补充。 2. 在任务执行的工作流路径规划方面,Agent 能够自行规划,面向简单或线性流程运行。例如,先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。 3. 在多智能体协作方面,吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员等,这些 Agent 相互协作共同开发应用或复杂程序。 4. 对于 AI Agent 的基本框架,OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划主要包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,处理复杂任务,并对过去行动进行自我批评和反思,从错误中学习改进未来步骤,提高最终结果质量。 5. 在信息处理方面,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,不断颠覆传统搜索引擎。智能摘要功能能辅助快速筛选信息,实现信息降噪。 6. 在信息表达方面,现在用自然语言描述一句话就能生成美观可用的图片,降低了不同角色的创作门槛和周期。 7. 对于产品经理的工作流,可使用 AI 进行搞定用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议先摸清自己的日常工作流,再根据工作节点线索找到适合自己的工具。 关于 Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。同时,在法律法规方面,相关生命周期参与者应实施适当的透明度措施,直接受 AI 系统使用影响的各方应能获取足够信息以维护自身权利,技术标准也可为评估、设计和改进 AI 系统的透明度和可解释性提供指导。
2025-03-24
降本增效的情况下建筑设计院自己开发AI和应用好现有的AI哪个选择更好
在降本增效的情况下,建筑设计院是自己开发 AI 还是应用现有的 AI,需要综合多方面因素来考虑。 现有的 AI 工具已经在很多领域带来了显著的优势,例如: 1. 提高效率:能够快速产生创意效果和设计方案。 2. 丰富设计效果:极大地丰富了设计自由度,实现各种创意。 3. 拓展工作流程:促使设计工作流程重新组合再造,拓展设计师的思维边界。 同时,也有一些专门针对建筑设计的现有 AI 工具,比如: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型,软件 UI 和设计成果颜值在线。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入需求自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,能实现建筑全寿命周期内信息的集成与管理。 然而,自己开发 AI 也有其潜在的好处,比如可以更精准地满足设计院的特定需求和业务特点。但开发 AI 需要投入大量的资源和时间,包括技术人才、资金、研发周期等。 综上所述,建筑设计院应根据自身的技术实力、资源状况、业务需求的独特性等因素来权衡选择。如果资源有限且现有工具能满足大部分需求,应用现有的 AI 可能是更好的选择;如果对特定功能有极高的要求且有足够的能力和资源支持,自己开发 AI 也未尝不可。
2025-03-23
我想学习有关ai的知识,但是并不是单单的系统性的学,而是想利用现有的模型比如说deep seekr1模型来训练一个自己的模型这样的,来实现某些功能
以下是关于 DeepSeek R1 模型的相关知识: 1. DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。 2. 与其他模型相比,Alpha Zero 只训练了三天,就以 100 比 0 的战绩完胜 Alpha Go Lee,Alpha Go(老)采用监督学习+强化学习,学习人类棋谱,更接近人类职业棋手风格,继承了人类的局限,Alpha Zero(新)完全摒弃人类数据的纯强化学习,从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。DeepSeek R1 在训练中更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。 3. 使用 DeepSeek R1 给老外起中文名的操作指引: 点击邀请,复制邀请链接或下载邀请海报分享给好友。 打开火山引擎的模型页面(https://zjsms.com/iP5QRuGW/),使用习惯的方式登录。 登录后点击左侧列表里的“在线推理”,再点击“快速入门”。 获取 API Key,点击“创建 API Key”,可修改名字后创建,创建完成后点击“查看并选择”,将“已复制”的提示内容找个地方存一下。 复制 R1 的调用示例代码,选择模型为“DeepSeek R1”,修改示例代码中的相关内容,然后点击右侧的复制按钮,将代码找个地方存起来。 上述接入方法是快速入门方式,平台会自动创建在线推理接入点,并提供 50 万 Token 的免费额度,用完才需充值。如需充值,点击页面右上角的“费用”》“充值汇款”,根据账单适当充值。 4. DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,这种“自问自答”是在模拟人类的深度思考,其“聪明”源于独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。
2025-03-22
你现在是抖音运营,如何可以利用现有图片素材,自动生成服饰图文
以下是一些利用现有图片素材自动生成服饰图文的方法和相关资源: 1. TryOffDiff:这是一种 AI 脱衣技术,能够逆向打造服装图片。与虚拟试衣不同,它可以将衣服从照片中“摘取”生成标准化服装图,并且能够保留图案、褶皱、徽标等精细细节,即使原图中部分被遮挡,也能准确推断。其应用场景广泛,适合商品目录制作及电商平台服装展示需求。详细介绍: 2. 可生成自定义服装效果图,支持颜色、款式、材质等多种细节描述。基于 H&M Fashion Captions 数据集,提供多样化的时尚风格参考。模型权重为 Safetensors 格式,便于集成和使用。模型下载: 3. 在 Stable Diffusion 中,若看到好看的图片想复制其效果,可将照片导入。若为 SD 下载的 PNG 格式照片,右边会自动弹出照片信息,包括正面关键词、负面关键词等,可复制这些信息到“文生图”页面生成相似图片。若照片无法自动弹出信息,可使用“标签器(Tagger)”生成关键词。
2025-03-12