Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

卷积神经网络模型原理

Answer

卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

机器之心分析师网络作者:周宇编辑:H4O本文以综述的形式,尽可能详细的向读者介绍胶囊网络的诞生,发展过程与应用前景。本文的内容以Hinton的标志性文章为基础,结合近年来发表在顶会顶刊的文章为补充,力图详细的让读者们了解胶囊网络的各种版本,熟悉它在不同领域的革命性突破,以及它在目前所存在的不足。深度学习和人工神经网络已经被证明在计算机视觉和自然语言处理等领域有很优异的表现,不过随着越来越多相关任务的提出,例如图像识别,物体检测,物体分割和语言翻译等,研究者们仍然需要更多有效的方法来解决其计算量和精度的问题。在已有的深度学习方法中,卷积神经网络(Convolutional Neural Networks)是应用最为广泛的一种模型。卷积神经网络通常简称为CNN,一般的CNN模型由卷积层(convolutional layer),池化层(pooling layer)和全连接层(fully-connected layer)叠加构成。在卷积的过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核的尺寸一般小于图像并且以一定的步长(stride)在图像上移动着得到特征图。步长设置的越大,特征图的尺寸就越小,但是过大的步长会损失部分图像中的特征。此外,池化层也通常被作用于产生的特征图上,它能保证CNN模型在不同形式的图像中能识别出相同的物体,同时也减少了模型对图像的内存需求,它最大的特点是为CNN模型引入了空间不变性(spatial invariance)。

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

Transformer是一种神经网络结构。简单地说,神经网络是分析图像、视频、音频和文本等复杂数据类型的一种非常有效的模型。针对不同类型的数据有专门优化过的的神经网络。例如,在分析图像时,我们通常会使用卷积神经网络。大体来说,它们模仿了人脑处理视觉信息的方式。卷积神经网络,图片来自Renanar2,wikiccommons大约从2012年开始,我们已经用CNN相当成功地解决了视觉问题,比如识别照片中的物体,识别人脸,手写数字识别。但在很长一段时间里,语言任务(翻译、文本摘要、文本生成、命名实体识别等)都没有较好的方法。这很不幸,因为语言是我们人类交流的主要方式。在2017年推出Transformer之前,我们使用深度学习来理解文本的方法是使用一种称为循环神经网络(RNN)的模型,它看起来像这样:循环神经网络,图片来自fdeloche,Wikimedia假设你想把一个句子从英语翻译成法语。RNN将一个英语句子作为输入,一次处理一个单词,然后按顺序吐出对应的法语单词。这里的关键词是“顺序”。在语言中,单词的顺序很重要,你不能随意打乱它们。比如下面的句子:“Jane went looking for trouble。(简到处找麻烦。)”意思与句子非常不同:“Trouble went looking for Jane”(麻烦到处找简。)因此,任何能够理解语言的模型都必须捕捉词序,而循环神经网络是通过在一个序列中,一次处理一个单词来做到的。但是RNN有问题。首先,他们很难处理冗长的文本序列,比如长段落或文章。当他们读到一段的结尾时,他们会忘记开头发生了什么。例如,基于RNN的翻译模型可能很难记住长段落主语的性别。

学习Hinton老爷子的胶囊网络,这有一篇历史回顾与深度解读

第一阶段,该模型使用PCAE直接从图像中预测部分模版存在的概率和姿态,并试图通过重新排列部分模板重建原始图像。第二阶段,SCAE使用OCAE预测一些物体胶囊的参数,并试图组织和发现部分和姿势为一组更小的对象,这对于重建图像十分重要。在这个模型中,由现成的神经编码器来实现推理过程,这点与以前的胶囊网络都不相同。其具体的原理如图11所示。图11.Stacked Capsule Autoencoders:(a)部分胶囊将分割输入为部分和姿态,这些姿势随后被放射变换的模板用来重建输入图像;(b)对象胶囊试图把推理出的姿态对应到物体,因此找出潜在的结构信息。具体来说,将一幅图像分割成多个部分并不是件容易的事,所以作者从抽象像素和部分发现阶段开始,提出CCAE(Constellation Capsule Autoencoder),它使用二维点作为部分,给出它们的坐标作为系统的输入。CCAE学习将点集进行建模成为熟悉星座,每一个点都是由独立的相似变换来变形。CCAE能在事先不知道星座的数量和形状的情况下学会给每个点分配对应的星座。之后作者还提出了PCAE(Part Capsule Autoencoder),它学着从图像中推理出它的部分和姿势。最后,叠加OCAE(Object Capsule Autoencoder),OCAE与CCAE高度相似。在CCAE中,一组二维输入点如图12所示,首先对其进行编码到K个对象胶囊中,一个对象胶囊k包含着一个胶囊特征向量ck,它的存在概率ak在0到1之间,然后还存在在一个3x3的对象-观察者关系矩阵,矩阵代表着对象和观察者之间的仿射矩阵。图12.超过三个点的在不同位置,不同尺度和方向的无监督分割。

Others are asking
卷积神经网络
卷积神经网络,也称卷积网络(术语“神经”具有误导性),使用卷积层来过滤输入以获取有用信息。卷积层具有学习的参数,能自动调整滤波器以提取对应任务的最有用信息,例如在一般目标识别中过滤对象形状信息,在鸟类识别中提取颜色信息。通常多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 最近的卷积网络使用初始模块,它使用 1×1 卷积核来进一步减少内存消耗,同时加快计算速度。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它在前馈网中使用反向传播,被用于读取北美地区约 10%的支票。卷积神经网络可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 在 ImageNet 2012 年的 ILSVRC 竞赛中,来自多个机构的先进计算机视觉小组将已有的最好计算机视觉方法应用于包含约 120 万张高分辨率训练图像的数据集。
2025-03-02
卷积神经是什么
卷积神经网络是一种在机器学习和计算机视觉领域广泛应用的神经网络架构。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 卷积神经网络使用卷积层,它过滤输入以获取有用信息,这些卷积层具有学习的参数,能自动调整滤波器以提取最有用信息。例如,在不同任务中,会分别过滤有关对象形状或颜色等的信息。通常,多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。步长设置会影响特征图尺寸,池化层能保证模型在不同形式的图像中能识别出相同物体,同时减少模型对图像的内存需求,并为模型引入空间不变性。
2024-11-22
可分离卷积
可分离卷积是卷积的一种特殊形式。在深度学习中,卷积具有多种解释和应用。 卷积可以描述信息的扩散,例如在不搅拌时牛奶在咖啡中的扩散,在量子力学中描述测量粒子位置时量子粒子在某个位置的概率,在概率论中描述互相关即重叠的两个序列的相似程度,在统计学中描述标准化输入序列上的加权移动平均值。 卷积滤波器可以被解释为特征检测器,输入针对某个特征进行过滤。图像的互相关可以通过反转核转换为卷积,内核可被解释为特征检测器,检测到特征会导致大输出,没有特征则小输出。 对于深度学习中卷积的哪种解释正确尚不明确,但目前最有用的解释是卷积滤波器作为特征检测器对输入进行过滤以解释图像的互相关。 相关参考资料包括: 图 3:通过在整个图像上滑动图像块来计算卷积。将原始图像(绿色)的一个图像块(黄色)乘以核(黄色斑块中的红色数字),并将其和写入一个特征映射像素(卷积特征中的红细胞)。图片来源:。 图 4:图像的互相关。卷积可以通过反转核(倒置图像)转换为互相关。然后,内核可以被解释为一个特征检测器,其中检测到的特征导致大输出(白色)和小输出(如果没有特征存在)(黑色)。图片取自。 附加材料:
2024-08-09
卷积神经网络
卷积神经网络,也称为卷积网络,使用卷积层来过滤输入以获取有用信息。卷积层具有可学习的参数,能自动调整滤波器以提取对应任务的最有用特征。例如在一般目标识别中侧重对象形状信息,鸟类识别中更倾向于鸟的颜色信息,它会自动适配以找到最佳特征。 通常,多个卷积层依次作用,在每一层后对图像进行过滤,获取越来越多的抽象信息,形成层次特征。 卷积网络还常使用池层,以实现有限的平移和旋转不变性,即便对象出现在异常位置也能检测到,同时能减少内存消耗,从而支持使用更多卷积层。 近期的卷积网络采用初始模块,利用 1×1 卷积核进一步降低内存消耗并加快计算速度,提高训练效率。 例如在自动驾驶汽车场景中,可将驾驶员当前视野的图像输入到卷积神经网络,训练其预测下一个可能行动的奖励。相似状态的图像相似,行动也相似,网络能针对不同情况进行微调。 相关附加材料: 。 图 5 展示了一个交通标志的图像被 4 个 5×5 的卷积核过滤,生成 4 个特征图,再通过最大池化进行二次采样。下一层将 10 个 5×5 的卷积核应用于这些子采样图像,并再次将特征映射集中在一起。最后一层是完全连接的层,用于组合所有生成的特征并用于分类器(本质上是逻辑回归)。图像由提供。
2024-07-20
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
从最基本的原理开始讲
以下是为您从最基本的原理开始讲解的相关内容: 强化学习: 从最开始的 K 臂抽奖机器入手讲解了强化学习的基本原理,然后切入到 Qlearning 中学习如何使用 Q 表来进行强化学习,最后再借助神经网络将 Q 表替换成用函数来拟合计算 Q 值。 参考文章: https://lilianweng.github.io/posts/20180123multiarmedbandit/ https://yaoyaowd.medium.com/%E4%BB%8Ethompsonsampling%E5%88%B0%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0%E5%86%8D%E8%B0%88%E5%A4%9A%E8%87%82%E8%80%81%E8%99%8E%E6%9C%BA%E9%97%AE%E9%A2%9823a48953bd30 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 https://rl.qiwihui.com/zh_CN/latest/partI/index.html https://github.com/ty4z2008/Qix/blob/master/dl.md https://hrl.boyuai.com/ http://zh.d2l.ai/ 苏格拉底辩证法及其第一性原理: 这里所说的“辩证法”,是一种通过提问和回答,深入挖掘、质疑和明确观念的艺术,是始于苏格拉底的、源头上的“辩证法”。这门艺术可通过一系列问题,不断挑战人们对世界的既定认知,揭示其中的矛盾和不足,从而引领人们学会自我反思并走向真理。把 AI 作为方法,就是要用辩证法以对话方式引导出 AI 被预训练的世界级的知识和推理能力,然后使其变成我们可以重复调用的“专家级团队”。既然先进的大语言模型是预训练的、以自然语言对话为交互的,又因为人们创造“概念”是为了对事物达成共识,并能更好地交流,所以我们就选择从对话开始,追本溯源,探索如何对话、如何训练对话能力及如何操纵概念——直达认知事物的第一性原理,然后再回到应用上来。 Stable Diffusion: 从艺术和美学的角度来看,扩散模型可以被理解为一种创作和表达过程,其中的元素通过互动和影响,形成一种动态的、有机的整体结构。 前向扩散过程是一个不断加噪声的过程。例如,在猫的图片中多次增加高斯噪声直至图片变成随机噪音矩阵。对于初始数据,设置 K 步的扩散步数,每一步增加一定的噪声,如果设置的 K 足够大,就能够将初始数据转化成随机噪音矩阵。扩散过程是固定的,由 Schedule 算法进行统筹控制。同时扩散过程也有一个重要的性质:可以基于初始数据 X0 和任意的扩散步数 Ki,采样得到对应的数据 Xi 。 反向扩散过程和前向扩散过程正好相反,是一个不断去噪的过程。将随机高斯噪声矩阵通过扩散模型的 Inference 过程,预测噪声并逐步去噪,最后生成一个小别墅的有效图片。其中每一步预测并去除的噪声分布,都需要扩散模型在训练中学习。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25