Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。

Answer

目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面:

  1. 利用 AIGC 技术实现游戏产业的生产力革命:
    • 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。
    • 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。
    • 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。
  2. 游戏内容辅助生成:
    • 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。
    • 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%-80%的成本。
    • 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。
    • 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。
    • 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。
  3. 游戏的智能运营:
    • 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。
    • 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。
    • 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。

这些技术的技术逻辑和技术细节如下:

  1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。
  2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。
  3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
Content generated by AI large model, please carefully verify (powered by aily)

References

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

05.能未来发展:游戏人工智能将成为生产力革命的关键休闲是人类生活不可或缺的重要组成部分,而游戏是一种特别引人入胜的休闲方式。电子游戏是游戏的新模式,是时代的产物,是发展最为迅猛的方向,电子游戏的发展壮大与人工智能的进程相互呼应,相得益彰,同向同行,携手共进。游戏人工智能技术的未来发展方向之一,是探索如何将游戏环境中的成果迁移至现实世界。电子游戏作为人工智能算法的测试场,将持续为人工智能模型的构建与训练,提供理想化的场所。IBM的深蓝,DeepMind的AlphaGo,OpenAI的OpenAI Five都通过机器学习、强化学习等先进技术在各种游戏环境中训练人工智能,并取得了显著的成果。然而,值得注意的是,虽然人工智能在特定的游戏环境中取得了显著的成果,但将这些技术推广到更广泛的、复杂的现实世界应用,仍然面临许多挑战。例如,电子游戏环境通常是封闭和可控的,而现实世界却充满了未知和不确定性。此外,游戏中的胜利条件往往是明确和一致的,而现实生活中的目标可能会有多个,可能互相冲突,或者会随时间变化。无疑,电子游戏是人工智能研究的理想实验场,因为它们为人工智能提供了一个可以精确度量和比较性能的环境;然而,从游戏环境迁移到现实世界中的应用,还需要学界与产业界进一步进行研究和发展。游戏人工智能技术的未来发展方向之二,是利用AIGC技术,实现游戏产业的生产力革命。很早以前,人工智能技术就开始应用于游戏制作的过程中,近来基于大语言模型和扩散模型的AIGC技术,更是受到了游戏产业界的欢迎。AIGC技术极大程度地降低了开发成本,缩减了制作周期,提升了游戏质量,甚至为游戏带来了新的交互体验。在新兴的AIGC具体应用方面,人工智能正在被应用于电子游戏开发的许多方面,包括生成新的游戏内容(如地图、角色和场景),驱动游戏中的非玩家角色(NPC),以及改进游戏的图像和声音效果等。游戏人工智能技术的未来发展方向之三,为通用人工智能的孵化给予帮助。经多个复杂游戏训练后的“玩游戏”的人工智能体,将

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

03.电子游戏中的人工智能:游戏将成为AIGC的重要应用场借助人工智能技术来辅助游戏开发,能够起到提升效率和增加游戏可能性的效果。一方面,人们可以借助人工智能的内容创作工具,缩减游戏开发的成本、减少游戏开发时间,甚至提升游戏的质量和完成度;另一方面,则是利用这项技术,为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。电子游戏与人工智能的结合有着广泛的可能,包括玩家建模、辅助设计、代码辅助和代码自动生成等等。其中与游戏直接相关的应用主要包括:(1)构建游戏中的智能体;(2)构建玩游戏的智能体;(3)程序化内容生成(Procedural Content Generation,PCG)。“构建游戏中的智能体”是指构建游戏的非玩家角色(Non-player character),也就是常说的NPC。这方面的工作包括构建智能对象,创建其移动、寻路、攻击等行为,以及对话等交互行为。游戏中的智能体是游戏的重要组成部分,为游戏内容增添了风采。“构建玩游戏的智能体”是狭义人工智能研究的主要任务。这项任务试图在不同类型的电子游戏场景下,创建与人类无异,甚至超过人类玩家水平的玩家智能体。与“构建游戏中的智能体”有所不同的是,前者是在游戏中构建智能体,智能体是游戏中的一个重要组成部分;而“玩游戏”的智能体则超脱于游戏之外,其本身并不是构成游戏的一部分。“程序化内容生成”则是近来在深度学习技术崛起的背景下,对游戏产业影响最为深远的一类应用。其内容包括利用人工智能来生成文字,帮助进行剧情设计、创作游戏剧本和情节叙事;借助人工智能技术来生成图像,从而完成人物、道具、场景和用户界面的设计;利用人工智能技术来生成音频,从而完成人物配音、游戏音效和配乐;利用人工智能技术来生成视频,创作游戏动画和特效;利用人工智能技术来创建游戏关卡,丰富游戏内容等等。程序化内容生成虽在上世纪末就已经在电子游戏上得到了应用,但是其功能却相对局限。2010年后,得益于机器学习等技术的发展,程序化内容生成开始与新兴技术相结合,AIGC开始在

质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期

游戏内容辅助生成,生成文、生成图、生成3D以及生成音乐。应用分为两个场景,一个是游戏策划人和制作人,第二个是美术的设计师。去年开始,听的较多的是基于Stable Difussion的生成。对于工业化的游戏公司,它能够通过2D美术素材的辅助生成提高创业效率50%,降低20%-80%的成本。文生图:提示词加参数就可以形成2D的参考图,适配度是非常高的,可能一开始用SD或者其他的开源工具去做。图生图:原画师或美术会使用,用一个线稿或原画,在原画基础上加一些Prompt,加一些参数,就可以形成一个效果图和二级的素材,这种情况会越来越多的。动画辅助渲染:用Lora对角色背景、关键帧进行风格渲染。例如,用真人视频渲染成二次元风。游戏的智能运营,包括智能NPC互动、客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。智能NPC:保持长期记忆;保持人物个性和对话表现形式;满足成本平衡游戏社区运营:海外Discord,国内Fanbook。让更多的玩家在游戏之外,在社群里面很好的互动,如基于游戏的美术素材二创、对于攻略的查询和智能客服。

Others are asking
你知道哪些ai游戏
以下是为您介绍的一些 AI 游戏: 1. 《Suck Up!》:这是一款由 Proxima 工作室开发的“喜剧欺骗游戏”。玩家在游戏中扮演吸血鬼,通过换装、与 LLM 驱动的 NPC 对话来使其放下警惕,最终成功吸血足够多的居民获得胜利。上线仅三周,在全网播放火速突破千万,在 youtube 上引起大量关注,评论区网友赞不绝口,主创对其未来很有信心。 2. 《PUBG:BATTLEGROUNDS》:其中的 AI 队友可帮助玩家寻找战利品、驾驶载具,并协作完成目标。能模拟真人队友行为,实时分析战场情况,互动分享战利品并提供战略建议,提升了游戏中的战术协作性和乐趣。 3. 采用 NVIDIA ACE 全新 AI 游戏角色引擎的游戏:让 NPC 拥有感知、思考、决策和行动能力,可与玩家互动、适应环境变化,并根据玩家行为进行调整,成为“活角色”。
2025-04-08
有AI+游戏的最新案例吗
以下是一些 AI+游戏的最新案例: 由 5 人独立游戏工作室 Proxima 开发的 AI 冒险独立游戏 Suck Up!上线三周油管播放超千万。这是一款沙盒社交冒险游戏,团队尝试加入了名为 Nemo 的 AI NPC,基于 LLM 驱动,Nemo 能在接收到用户命令或其他线索后,调动感知、记忆,并转化为可执行的游戏行动。去年上半年,该工作室因获得 160 万美元投资引起轰动,上线后也受到资本关注。玩家对其玩法和模式提出了很多创意想法,如设计成就系统、上线多人模式等。 开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。像 MusicLM 等模型已经支持生成多音轨的作品。 2023 年 Genfun.ai 和 Meshy 联合制作的游戏《Soul Chronicle》,是首款实时 3D+AIGC+UGC 的 MMO 手游,最大突破是制作出了与游戏完美融合的 3D AIGC 技术,可在游戏中实时生成角色皮肤。 2024 年 Bitmagic 释出的《Roleverse》平台,可在平台内使用提示在游戏内定制角色,对角色进行缩放、挤压和拉伸,也能轻松对游戏世界进行编辑。 AI 技术在游戏行业的应用由来已久,且不断发展。从最初的简单内容和随机元素生成,到辅助游戏设计,再到如今能够生成更复杂的游戏内容,如动态场景、智能 NPC 行为等。AI 对游戏创作的影响包括美术与风格、剧情与叙事、关卡与玩法、音效与音乐、测试与优化等方面。同时,AI 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,游戏还能成为 AI 模型能力的最佳试验场。
2025-04-01
小白如何通过学习AI跨行进入游戏行业
对于小白想要通过学习 AI 跨行进入游戏行业,以下是一些建议: 1. 学习基础的 AI 知识:包括机器学习、深度学习的基本概念和算法,了解常见的模型如神经网络等。 2. 掌握相关编程语言:例如 Python,它在 AI 开发中广泛应用。 3. 研究游戏中的 AI 应用:了解游戏中的智能角色、路径规划、策略制定等方面是如何运用 AI 技术的。 4. 实践项目:通过参与开源项目或自己创建小型的游戏 AI 项目,积累实际经验。 5. 学习游戏开发知识:了解游戏引擎、游戏设计原则等,以便更好地将 AI 技术融入游戏开发中。 6. 参加相关培训课程或在线学习资源:获取系统的学习和指导。 7. 建立人脉:与游戏行业的专业人士交流,了解行业动态和需求。 8. 制作优秀的作品集:展示自己在游戏 AI 方面的成果和能力,增加求职竞争力。
2025-03-21
什么AI软件可以做游戏
以下是一些可以用于制作游戏的 AI 软件和工具: 1. Scenario 和 Iliad:可以创建游戏资源。 2. Promethean:能够构建整个虚拟世界的平台。 3. Inworld、Charisma 和 Convai:可用于生成非玩家角色(NPC)。 4. AI Dungeon 和 Hidden Door:基于文本的游戏。 5. 用于抠图的 remove,可以直接抠图或在 PS 里安装操作,用于制作素材。 6. Aive 可尝试制作背景音乐,但可能难以满足要求,可利用分离人声的 AI 软件处理音乐。 7. 微软 AI 语音:可制作旁白,语音库支持 147 种语言,还有定制声音。 8. Cursor:通过对话获得代码,使用的语言模型包括 Claude3.5sonnet、GPT4o 等,指令详细效果更好。 9. Deepseek(新手推荐):方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 10. 通义灵码:在 Pytharm 中安装插件使用。 11. JetBrains 自身的助手插件:在 Pytharm 中安装,收费,有 7 天免费试用。 12. Marscode 及 Tencent cloud AI code Assistant 等。 13. 无影的晓颖 AI 助手:内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,AI 不太可能完全取代人类艺术家在高质量 AAA 游戏中的工作和愿景,但会为其注入动力,提高效率和降低成本。同时,不同的 AI 工具在生成游戏的不同方面各有优势,具体使用效果可能因个人需求和实践而有所不同。
2025-03-21
AI可以做游戏吗
AI 可以做游戏。生成式 AI 有望在游戏中发挥重要作用,能使生产高质量游戏变得更简单、快速和低成本,让玩家定制游戏体验。 例如,像 Scenario、Iliad 这样的工具可以创建游戏资源,Promethean 这样的平台能构建虚拟世界,Inworld、Charisma、Convai 等产品能生成非玩家角色(NPC)。基于文本的游戏如 AI Dungeon 和 Hidden Door 也是早期例子。 在游戏制作方面,最受欢迎的游戏成本高昂,开发人员需生成大量媒体资源。但 AI 不会完全取代人类艺术家,而是为其注入动力,让他们更高效工作,更快更低成本发布游戏。 像 Microsoft Flight Simulator 这样的游戏通过与 blackshark.ai 合作,利用 AI 从 2D 卫星图像生成逼真的 3D 世界。未来,游戏制作中涉及的每个资产都可能有生成式 AI 模型,内容价格将大幅下降,生产时间和成本也会大幅降低。 随着游戏中生成式人工智能革命的进展,它将重塑用户生成内容(UGC),使任何人都能创建游戏,游戏创作将变得民主化,创造出更多新的游戏制作者。
2025-03-21
有什么使用AI驱动的游戏项目吗?其中有哪些比较热门
以下是一些使用 AI 驱动的游戏项目及热门情况: 1. 《Among Us》:由只有 5 名员工的工作室 Innersloth 制作。 2. 《微软模拟飞行》:有新的游戏类型和与新内容实时生成结合的特点。 3. 《AI Dungeon》和《Hidden Door》:基于文本的早期游戏例子。 4. 《Suck Up!》:2023 年 12 月由 Proxima 工作室开发的“喜剧欺骗游戏”,玩家扮演吸血鬼与 LLM 驱动的 NPC 对话,上线仅两周全网播放火速突破千万。 此外,还有以下趋势和特点: 1. 由人工智能辅助的“微型游戏工作室”逐步崛起,小型工作室能创造的游戏规模将增长。 2. 每年发布的游戏数量会增加。 3. 新的游戏类型将会被创造出来,例如以人工智能创造的角色为特色的 Spellbrush 的 RPG 游戏 Arrowmancer。 4. 有的游戏开发商使用人工智能让玩家在游戏中创建自己的头像。 生成式 AI 将使生产高质量游戏变得更加简单、更快和更便宜,同时使玩家能够真正定制他们的游戏体验。我们已经看到像 Scenario、Iliad 这样可以创建游戏资源的 AI 工具,以及像 Promethean 这样可以构建整个虚拟世界的平台。甚至可以用像 Inworld、Charisma 和 Convai 这样的产品生成非玩家角色(NPC)。
2025-03-18
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
生成设计图:包括图书馆静音舱+小组讨论舱 :用隔音板材划分独立空间,舱体外壳由学生绘制抽象艺术图案。 可变形桌椅 :定制模块化桌椅,支持拼合为“创作大桌”或独立卡座,适配小组作业与个人学习。 艺术疗愈角 :设置减压涂鸦墙、小型绿植温室,配备舒缓音乐耳机。
以下是为您提供的关于生成您所需设计图的相关信息: 星流一站式 AI 设计工具具有入门模式和高级模式。 入门模式: 可以使用图像控制功能精准控制生成图像的内容和风格,如空间关系、线稿、人物长相、姿势等。 只能使用以下四种参考功能: 全部图片参考功能,包括原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割等。 原图、SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。 高级模式: 点击生成器下方的切换按钮进行切换。 与入门模式相比增加了高级模式框架。 基础模型方面,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5。 图片参考方面,允许使用更多的图像控制功能,在星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法会影响图像放大后的图像质量,建议默认即可。 重绘幅度与初步生成的图像的相似度有关。 其他参数默认即可,参数方面允许调整更多的高级参数。 采样器方面,采样方法决定了模型在生成图像过程中的出图质量,有些采样器在细节处理上表现更佳比如 DPM++2M,而有些则在生成速度上更快,比如 Euler。 采样步数一般来说,步数越多,模型对图像的生成和优化越充分,但同时也会增加生成时间。 随机种子是文生图的随机数种子,通过设置相同的随机数种子,可以确保在相同的参数配置下生成相同的图像。 CFG Scale 控制生成图像与提示词一致性的重要参数。 具有脸部/手部修复功能,利用算法对人像的脸部或者手部进行修复。 此外,学生使用项目化的方式分析现状,做问卷调查,数据分析,在 ChatGPT 的帮助下设计出优化过的设计图,然后使用 3D 的空间设计软件设计出来 3D 的设计图。比如有孩子为优化老师家访路线提出做一个软件产品的案例。
2025-03-23