Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何利用 AIGC 技术实现游戏产业的生产力革命,请结合相关技术的原理和框架图进行阐述

Answer

利用 AIGC 技术实现游戏产业的生产力革命主要体现在以下几个方面:

  1. 降低开发成本:AIGC 技术能够极大程度地减少游戏开发过程中的人力、物力和时间投入。
  2. 缩减制作周期:加快游戏的制作速度,使游戏能够更快地面向市场。
  3. 提升游戏质量:例如生成新的高质量游戏内容,如地图、角色和场景,改进游戏的图像和声音效果等。
  4. 带来新的交互体验:为玩家提供更加丰富和独特的游戏体验。

游戏人工智能技术的未来发展方向还包括:

  1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所,但将游戏中的技术推广到现实世界应用仍面临诸多挑战,需要进一步研究和发展。
  2. 为通用人工智能的孵化给予帮助:经多个复杂游戏训练后的“玩游戏”的人工智能体,将为通用人工智能的发展提供支持。

随着游戏中生成式人工智能革命的进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能,创作者只会受到他们的精力、创造力和想象力的限制。生成式人工智能将通过使游戏创作民主化来改变和颠覆 UGC 游戏领域,让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。

Content generated by AI large model, please carefully verify (powered by aily)

References

游戏:游戏AI发展报告2023:历史演变、技术革新与应用前景

05.能未来发展:游戏人工智能将成为生产力革命的关键休闲是人类生活不可或缺的重要组成部分,而游戏是一种特别引人入胜的休闲方式。电子游戏是游戏的新模式,是时代的产物,是发展最为迅猛的方向,电子游戏的发展壮大与人工智能的进程相互呼应,相得益彰,同向同行,携手共进。游戏人工智能技术的未来发展方向之一,是探索如何将游戏环境中的成果迁移至现实世界。电子游戏作为人工智能算法的测试场,将持续为人工智能模型的构建与训练,提供理想化的场所。IBM的深蓝,DeepMind的AlphaGo,OpenAI的OpenAI Five都通过机器学习、强化学习等先进技术在各种游戏环境中训练人工智能,并取得了显著的成果。然而,值得注意的是,虽然人工智能在特定的游戏环境中取得了显著的成果,但将这些技术推广到更广泛的、复杂的现实世界应用,仍然面临许多挑战。例如,电子游戏环境通常是封闭和可控的,而现实世界却充满了未知和不确定性。此外,游戏中的胜利条件往往是明确和一致的,而现实生活中的目标可能会有多个,可能互相冲突,或者会随时间变化。无疑,电子游戏是人工智能研究的理想实验场,因为它们为人工智能提供了一个可以精确度量和比较性能的环境;然而,从游戏环境迁移到现实世界中的应用,还需要学界与产业界进一步进行研究和发展。游戏人工智能技术的未来发展方向之二,是利用AIGC技术,实现游戏产业的生产力革命。很早以前,人工智能技术就开始应用于游戏制作的过程中,近来基于大语言模型和扩散模型的AIGC技术,更是受到了游戏产业界的欢迎。AIGC技术极大程度地降低了开发成本,缩减了制作周期,提升了游戏质量,甚至为游戏带来了新的交互体验。在新兴的AIGC具体应用方面,人工智能正在被应用于电子游戏开发的许多方面,包括生成新的游戏内容(如地图、角色和场景),驱动游戏中的非玩家角色(NPC),以及改进游戏的图像和声音效果等。游戏人工智能技术的未来发展方向之三,为通用人工智能的孵化给予帮助。经多个复杂游戏训练后的“玩游戏”的人工智能体,将

AI将使任何人都能够创建游戏

原文地址:https://a16z.com/2023/03/17/the-generative-ai-revolution/作者:A16Z分析师随着[游戏中生成式人工智能革命的](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)进展,它将彻底重塑用户生成内容(UGC),创造一个任何人都可以构建游戏的世界,并将游戏市场扩大到超出许多人的想象。在未来几年,深厚的技术知识或艺术掌握将不再是开发游戏所需的基本技能;相反,创作者只会受到他们的精力、创造力和想象力的限制。想法并不便宜;他们会很珍贵。最重要的是,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。想法很便宜。只有你对它们做了什么才重要。——艾萨克·阿西莫夫根据UGC平台的历史、最近面向消费者的法学硕士的可用性以及对先前技术变革的观察,我们相信,从UGC游戏到人工智能驱动的UGC(我们将在下文中称为AIGC)的演变将会发生分两个阶段。

AI将使任何人都能够创建游戏

生成式人工智能将通过使游戏创作民主化来改变和颠覆UGC游戏领域。每个人内心都是游戏玩家,每个游戏玩家都可以成为游戏制作者。AIGC时代将让数百万人能够制作他们的第一款游戏,新一代游戏开发者将释放出一波游戏设计创造力浪潮,从而永远改变游戏行业。更多的创作者、更多样化的游戏、更多的游戏玩家。如果您是一位创始人,热衷于构建能够解锁新一代创作者的生成式人工智能工具,请随时与我们联系!

Others are asking
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
降低AIGC查重率的提示语
以下是关于降低 AIGC 查重率的提示语相关内容: 结构化提示词对于控制 AIGC 输出效果有重要作用,但原有的结构化提示词在 DeepSeek 上可能不好使,主要原因包括:详细规定思考步骤限制模型自主思考能力、包含大量低信息价值内容降低信息密度、严格的输出格式要求限制模型表达方式。 针对此问题,可设计新的提示词结构,基础结构如下: 1. 符合角色扮演的,基于 html 标签语法编写格式,好处是不用再学 Markdown 语法,降低学习门槛,有更完善逻辑结构且逻辑可嵌套,但坏处是比 Markdown 语法逻辑负担重,初学者易忘记写闭合标签。 2. 您也可以继续使用 MarkDown,只要抽象出来的元素不瞎换位置就行,因为目前这个次序是实际组合排列测试中效果最好的。 同时,还有关于 AIGC 其他方面的内容,如: 1. AI 将使任何人都能够创建游戏,包括人工智能+人类共同创作工具、提示共享和搜索等方面。 2. AIGC 存在刑事法律风险,如利用 AIGC 传递假新闻、诈骗等,服务提供者应遵循相关规定,采取标识、保存日志、设置反馈机制等措施以确保合规。
2025-04-14
写论文,AI写的部分比较多,如何降低AIGC呢?
以下是一些降低论文中 AIGC 比例的方法和常用的 AIGC 论文检测网站: 降低 AIGC 比例的方法:需要您更多地进行自主思考、研究和创作,减少对 AI 生成内容的依赖。 AIGC 论文检测网站: Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法为上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 这些工具和网站可以帮助教育机构、研究人员和编辑识别 AI 生成的内容,确保学术和出版的原创性和诚信。您可以根据具体需求选择适合的工具来进行检测。
2025-04-13
降低让写论文时aigc查重的提示词
以下是一些可能有助于降低写论文时 AIGC 查重的提示词相关内容: 1. 利用连锁密度法撰写摘要:来自相关文章,您向其索取一篇文章后,需通过重复特定步骤来撰写逐渐简洁、重点突出的摘要。步骤包括找出遗漏的关键要素并编写新的更精炼的摘要,要遵循一系列原则,如与主要内容紧密相关、具体简明、新颖、忠实原文等,最终以 JSON 格式回答,包含“Missing_Entities”和“Denser_Summary”两个键值。 2. 适配 DeepSeek 的结构化提示词:结构化提示词对整理逻辑内容有帮助,当前旧的结构化提示词在 DeepSeek 上不好使的主要原因包括限制模型自主思考能力、包含低信息价值内容、严格的输出格式要求限制表达方式等,应设计新的提示词结构,如基于 html 标签语法的编写格式,其有降低学习门槛、完善逻辑结构等好处,也有逻辑负担重等坏处。 3. RAG 提示工程(二)中的安全与防护实践:文章最初发表于 LangGPT 社区,融入了宝贵见解。提到之前提过的提示词安全问题,展示了某 toC 产品泄漏提示词及模型回复的情况,强调对于生产级应用,安全是第一位的,在讲解更进一步的提示词技术前要先关注提示词安全。
2025-04-11
什么是AIGC
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 又称为生成式 AI,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介很多,包括但不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言等。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-04-10
框架图AI工具
以下是一些常见的框架图 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可帮助创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)中的生成设计工具:可根据用户输入的设计目标和约束条件自动产生多种设计方案。 以下是一些能够帮助建筑设计师审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 2. Maket.ai:面向住宅行业,在户型设计和室内软装设计方面有探索,能根据输入自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。
2025-03-17
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
,当前AI数字人发展的新态势,以及新技术和成果
当前 AI 数字人的发展呈现出以下新态势,并取得了一系列新技术和成果: 数字人简介: 数字人是运用数字技术创造的,虽现阶段未达科幻作品中的高度智能,但已在生活多场景中出现且应用爆发。业界对其尚无准确定义,一般可按技术栈分为真人驱动和算法驱动两类。真人驱动的数字人重在通过动捕设备或视觉算法还原真人动作表情,主要用于影视和直播带货,其表现质量与建模精细度及动捕设备精密程度相关,不过视觉算法进步使在无昂贵动捕设备时也能通过摄像头捕捉关键点信息实现不错效果。 B 端变现与创业方向: B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。自媒体创业需具备内容创新和差异化,内容成本低且更新迭代快。游戏创业可做轻量化游戏,结合 AI 技术满足放松和社交需求,专注垂类赛道避免与大厂竞争。影视创业在 25 年将是拐点,更多内容会采用 AI 技术。广告营销创业重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: AI 虚拟人从早期以首位为核心的宅文化虚拟偶像,发展到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人。虚拟人产业链包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。未来 3 10 年,AI 虚拟人是 Web 3.0 的风口,提前布局有潜力的赛道可迎接机遇,但创业对创业者综合能力要求极高。 未来展望: 数字人未来有很多应用场景,如家庭中的数字人管家、学校中的数字人老师、商场里的数字人导购等。未来还会有很多技术突破,如将五感数据和躯壳控制参数作为输入,次世代算法可自我迭代升级和自行演化躯壳控制方式。通过 Dify 搭建数字人的开源项目可展现低门槛高度定制数字人的基本思路,数字人的核心在于 Agent 即灵魂,如何在 Dify 上编排专属数字人灵魂值得体验。期望随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,AI 既能提供高质量信息,也能关注用户情绪。
2025-04-14
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和应用发展的研究报告
以下是一些完整综观地阐述了 2022 年到 2025 年 AIGC 相关技术和应用发展的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. Celent 的《利用 AI 在支付领域的优势》,讨论了生成式人工智能的潜力和银行业对此的积极探索,并预测 AI 将在提高支付处理效率和创造新的收入流方面发挥关键作用。链接:https://waytoagi.feishu.cn/record/Cwtnr6KSIeL8JDcmljZcc55onPx 4. 华西证券的 AIGC 行业深度报告(14):《从英伟达到华为,零部件迎来大机遇》,英伟达的新一代 GPU 架构将带来零部件的升级,同时,华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示了国产算力集群的潜力。链接:https://waytoagi.feishu.cn/record/UXR3rwzGSe92xLcLqFmcRpnhnUc 5. 《2024 端到端自动驾驶行业研究报告》,通过访谈 30 余位专家,分析了端到端技术的发展、主要参与者、驱动力和挑战。预计到 2025 年,模块化端到端系统将开始商业化应用,推动技术、市场和产业格局的变革。链接:https://waytoagi.feishu.cn/record/QBnRra7VfexdazctR1Acc5YGn6d 6. 微软的《释放英国的 AI 潜力:利用 AI 促进经济增长》,英国拥有先进的科技行业和数字优势,但与其他国家相比领先优势有限,英国面临基础设施、数字技能和数字技术采用的瓶颈。链接:https://waytoagi.feishu.cn/record/K1bfraBc7eMFvOc1T21cto8rnhh
2025-03-31
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
一句话阐述工作流的原理
工作流的原理通常包括以下几个方面: 1. 由多个节点构成,节点是基本单元,如大语言模型、自定义代码、判断逻辑等。默认包含起始的 Start 节点和末尾的 End 节点。 2. 不同节点可能需要不同的输入参数,包括引用前面节点的参数值和自定义的输入值。 3. 一些工作流通过特定插件实现特定功能,如 SDXL Prompt Styler 插件结合 ControlNet 实现图片风格转化,其原理是在 prompt 中加入预设好的风格关键词组合。 4. 对于复杂任务场景,通过对插件、大语言模型、代码块等功能的可视化组合,实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。 5. 像生成图文短句的工作流,会包含多个步骤,如大模型生成标题、通过代码节点获取标题、生成简介、生成文案、归纳总结、传递给图像流等,并对图像流进行提示词优化和文生图等操作。
2025-03-18
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
一句话阐述chatgpt的原理。
ChatGPT 的原理可以概括为以下几点: 1. 实质功能是词语接龙,即给定任意长的上文,它会用自己的模型生成下一个词,然后将生成的词与上文组合成新的上文,不断重复生成任意长的下文,此过程称为自回归生成。 2. 训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,让模型学习提问和回答的通用规律,以便在遇到未记忆过的提问时,能利用所学规律生成用户想要的回答,这种举一反三的目的也称为泛化。 3. 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 4. 其神经网络由简单元素组成,基本操作是为每个新单词生成“输入”,然后将其“通过其元素”。 5. 最终,ChatGPT 从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但结果非常类似于人类生成的文本,这表明人类语言及背后的思维模式结构比想象的更简单和具有“法律属性”。同时,ChatGPT 的基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。
2025-03-18