Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

像文心一言、kimi之类的人工智能助手还有哪些

Answer

以下是一些常见的人工智能助手:

  1. Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说、上网冲浪,还能协助处理资料和生成内容。
  2. 文心一言:百度出品的 AI 对话产品,可写文案、想点子、聊天、答疑解惑。
  3. 通义千问:由阿里云开发,能够与人交互、回答问题及协作创作。

此外,还有夸克、豆包等。更多大模型产品,您可以访问相关网站查看。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:国内免费的大模型app有哪些?

Kimi智能助手、文心一言、通义千问这几个都是国内免费的APP。Kimi智能助手:Kimi是一个有着超大“内存”的智能助手,可以一口气读完二十万字的小说,还会上网冲浪,Moonshot AI出品的智能助手。文心一言:百度出品的AI对话产品,它的定位是智能伙伴,能写文案、想点子,又能陪你聊天、答疑解惑。通义千问:通义千问是由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。还有更多大模型产品,可以访问网站查看:内容由AI大模型生成,请仔细甄别。

SOP:如何利用 AI 30分钟不到打造爆款公众号文章

收集完资料后,紧接着的任务是对这些资料进行整理。我通常会使用月之暗面开发的[Kimi](http://kimi.moonshot.cn)这个AI会话助手。[Kimi](http://kimi.moonshot.cn)具备读取网页内容的能力,并且能够在此基础上生成一定的内容。当[Kimi](http://kimi.moonshot.cn)读取完毕时,会显示绿色标点作为提示。需要注意的是,[Kimi](http://kimi.moonshot.cn)的阅读能力有一定的限制,它可能无法一次性处理大量的资讯,或者某些网站的内容可能无法被读取。为了克服这些限制,我们可以分批次地将资料提供给[Kimi](http://kimi.moonshot.cn),确保它能有效地读取并理解所有可用的网站内容。这样我们资料都读取了,就让他整理下资讯内容。它做的还不错,我挺满意的。接下来就是让它转化成一篇吸引人的公众号文章了。

《2024年度AI十大趋势报告》发布:技术创新、产品洗牌、行业动态一文看尽

为了更好地还原国内AI产品的现状,量子位智库从用户规模、新增速度、用户活跃和用户粘性四⼤⻆度进行了数据统计。目前,APP端和Web端均尚未出现比肩互联⽹时代现象级破圈之作的产品,且整体来看和海外同类型产品相差5倍以上。在APP端,⽬前还没有产品能够拿出全维度的亮眼表现,市场缺乏诞生杀手级产品的场景。截⾄2024年10⽉,共56款产品的历史下载量超百万,8款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。而从单月新增来看,夸克、豆包和Kimi智能助手月增长可达到千万级,10款产品可达百万级;DAU方面,夸克DAU超过2600万,豆包、Kimi、天天跳绳和文小言DAU超百万;用户粘性方面,夸克和叨叨三日留存率超过30%。在Web端,AI智能助⼿赛道外的所有赛道都基本处于停滞状态,AI搜索、AI写作、AI⽣图等赛道甚⾄出现了头部产品数据下滑、或是下滑后回升乏力的情况。用户规模方面,月总访问量超千万的共7款产品,包括夸克、腾讯文档、百度文库、Kimi智能助手、文心一言、豆包和通义。而在用户活跃度上,共3款产品——夸克、Notion和百度文库的MAU超过千万,19款产品MAU超过百万。仅有14款产品人均每月访问超过5次,13款产品平均访问时长超过10分钟。在数据统计基础上,「量子位智库AI 100」通过综合100和原生100两张榜单提名了国内优秀的AI产品。

Others are asking
目前市面上的文心一言,通义,deepseek等,用于写作效果如何
目前市面上的文心一言、通义、DeepSeek 等用于写作的效果各有特点: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 通义(阿里巴巴):在特定领域和任务上表现出卓越的能力。 DeepSeek:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,不同模型的效果会因用户的具体需求和使用场景而有所差异。
2025-02-26
文心一言的收费模式
文心一言将从 4 月 1 日起全面免费。申请开通文心一言的 API 需前往百度 。
2025-02-24
对DeepSeek-R1、GPT-4o、文心一言、通义千文、豆包、海信星海和混元模型的性能对比分析
以下是对 DeepSeekR1、GPT4o、文心一言、通义千文、豆包、海信星海和混元模型的性能对比分析: 通义千问: 通义团队将 Qwen2.5Max 与目前领先的开源 MoE 模型 DeepSeek V3、最大的开源稠密模型 Llama3.1405B 以及同样位列开源稠密模型前列的 Qwen2.572B 进行了对比。在所有 11 项基准测试中,Qwen2.5Max 全部超越了对比模型。 Qwen2.5Max 已在阿里云百炼平台上架,企业和开发者可通过阿里云百炼调用新模型 API,也可在全新的 Qwen Chat 平台上使用。 DeepSeekR1: 属于基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量。 其“聪明”源于独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”新阶段。 其思考与表达碾压了包括 GPT4o、Claude Sonnet3.5、豆包等模型,思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。 目前关于文心一言、海信星海和混元模型在上述内容中未提供具体的性能对比信息。
2025-02-12
请对比文心一言、豆包、天工、Kimi以上几个软件各自的优势
以下是文心一言、豆包(字节跳动)、天工(不太明确您提到的天工具体所指,可能是指某些特定的模型或产品)、Kimi 这几个软件的优势对比: 文心一言 4.0(网页版): 优势:由百度开发,可能在某些特定领域的知识储备和语言理解能力上有一定优势。 豆包(字节跳动): 优势:无需科学上网,使用方便。 Kimi: 优势:不需要科学上网,无收费,不需要登录可以直接使用;有案例,点击预设问题即可开始尝试。 需要注意的是,对于不同的用户和应用场景,这些软件的优势可能会有所不同,其表现也会受到数据、算法、训练等多种因素的影响。
2025-01-16
文心一言和通义千问哪个更强
文心一言和通义千问在不同方面各有特点。 对于律师答辩状 prompt 的评测: 文心一言: 输入起诉状后,直接给出起诉状范本,未理解 prompt 输出答辩状。经提示输出的答辩状存在主体少、不专业、错误多等问题,但提示输出应诉方案时,能按 prompt 结构输出,内容简洁明了,可作为框架使用。 通义千问: 输入起诉状后,欢迎语直接,无废话,能正确处理两个答辩人,但专业度稍差,未引用具体法律条文。提示输出应诉方案时,能按 prompt 结构输出,整体内容及格,无亮点。 在结构化 prompt 的测试和反馈中: 文心一言的综合评分为 2.25 分,整体表现一般。 通义千问的综合评分为 3.125 分,表现还算不错,若内容再提高些,体验感和专业性会更好。 此外,文心一言和通义千问都是国内免费的 APP。文心一言是百度出品的 AI 对话产品,定位为智能伙伴;通义千问是由阿里云开发的聊天机器人。
2025-01-07
文心一言比赛
以下是关于文心一言的相关测评信息: 1. 小七姐的测评: 任务一:短提示。设置让模型生成能根据用户需求写出合适的 RPG 游戏策划(包括角色、剧情、玩法和场景等内容)的提示词。文心一言在输出结果上依然有自问自答的问题,得分 75。 任务二:少样本示例。同样是生成上述提示词,本轮用少样本提示框定了模型的输出内容,四个大模型的输出都有很大提升,文心一言得分 80。 2. 中文大模型基准测评 2023 年度报告: 简介:文心一言是百度全新一代知识增强大语言模型,于 2023 年 3 月 16 日正式发布,10 月 17 日发布 V4.0 版本,已有 7000 万用户。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高,是国内有竞争力的大模型。 适合应用:能力栈广泛,可应用场景多。重点推荐在查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面的应用,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。
2025-01-03
如何登录KIMI
要登录 Kimi,您可以参考以下步骤: 1. 推荐两个实用的浏览器插件:在(不方便下载的,文末附下载链接)。 2. 在浏览器中登录自己的 Kimi 账号,关联网页版。 安装相关插件的特点和注意事项: 1. Kimi Copilot网页总结助手: 特点:极简,点击一键总结,没有其它花里胡哨的功能;Kimi 无法访问的网页也可以进行总结,如推特等;英文文章直接用中文总结要点;支持 Dark Mode。 注意:本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品;由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 2. Kimi 阅读助手: 特点:用更简单的方式使用 Kimi。 注意:需要 Chrome 114 及以上版本才能正常使用扩展;暂不支持 Arc 游览器(Arc 缺少相关 API)。 在 Obsidian 中使用 Kimi 的步骤: 1. 用命令面板打开刚才创建的页面,默认快捷键 Ctrl+P 。 2. 在弹出的搜索框中输入插件名称:custom frames 。 3. 在下拉选项中选择 OpenKimi 。 4. 打开刚才设置好的 Kimi 窗口。 以上是关于登录 Kimi 以及相关插件和使用的信息。
2025-03-14
如何在Kimi创建我的个人知识库
以下是在 Kimi 创建个人知识库的相关信息: 使用 GPT 打造个人知识库: 由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量并保存。 当用户提问时,将问题也转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示。 常见的向量距离计算方式是欧几里得距离。 使用 Coze 创建个人知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式(目前支持文档、表格、图片)并填写信息。 可选择本地文档或问答对表格,还能进行自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-03-07
我是一个新手小白,帮构思一下关于如何学习AI的PPT .要求有包括豆包,AI数字人,KIMI,灵犀,如影,剪映,即梦等APP学习技术。都带上APP网址
以下是为您构思的关于如何学习 AI 的 PPT 大纲: 幻灯片 1:封面 标题:如何学习 AI 幻灯片 2:目录 1. AI 辅助 PPT 的原理和作用 2. 几款 PPT 生成工具(网站) 3. 相关 APP 介绍 幻灯片 3:AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力 2. 生成打底的内容,减轻人写内容的工作 3. 文章生成 PPT,让 AI 帮忙摘要内容,生成大纲列表 4. 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容 5. 在特定场景下不用改直接用,如学生快速为小组展示配 PPT 幻灯片 4:AI 辅助 PPT 的流程 1. 用户输入 2. AI 输出 3. 排版 网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版 幻灯片 5:几款 PPT 生成工具(网站) 1. 讯飞智文:https://zhiwen.xfyun.cn/ (免费引导好) 2. Mindshow.fun :http://Mindshow.fun (Markdown 导入) 3. kimi.ai :http://kimi.ai (选 PPT 助手暂时免费效果好) 4. Tome.app :http://Tome.app (AI 配图效果好) 5. Chatppt.com :http://Chatppt.com (自动化程度高) 6. 百度文库:https://wenku.baidu.com (付费质量好) 幻灯片 6:相关 APP 介绍 1. 豆包 2. AI 数字人 3. KIMI 4. 灵犀 5. 如影 6. 剪映(图文成片,只需提供文案,自动配图配音) 7. 即梦 希望以上内容对您有所帮助!
2025-03-05
国产ai,除了deepseek能力最强,如元宝ai,文言一心,kimi,纳米ai,通义等,哪个能力最强
以下是关于国产 AI 产品在 2025 年 1 月的一些榜单情况: 在国内流量榜中,排名依次为:deepseek、豆包、Kimi、文心一言、deepseek 开放平台、百度 AI 助手、阿里通义、纳米 AI 搜索、秘塔 AI 搜索。 在国内月活榜中,排名依次为:deepseek、豆包、deepseek 开放平台、Kimi、百度 AI 助手、文心一言、知乎直答、纳米 AI 搜索、沉浸式翻译。 需要注意的是,不同 AI 产品在不同方面可能具有各自的优势,其能力的强弱也会因具体应用场景和用户需求而有所不同。
2025-02-26
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10