Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

python实现网页爬虫

Answer

以下是使用 Python 实现网页爬虫的详细步骤:

首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。

在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装:

!pip install beautifulsoup4 requests

然后,使用以下代码抓取并解析指定的网页内容:

import requests
from bs4 import BeautifulSoup

def get_webpage_content(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    # 这里根据实际网页结构调整提取正文的部分
    # 例如:content = soup.find('div', class_='article-content').get_text()
    return content

url = 'https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ'
print(get_webpage_content(url))

请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。

在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。

另外,Python 在自动化方面应用广泛,例如办公软件自动化(python-docx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、python-pptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(docker-py 用于 Docker 容器管理)等。

Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

在Colab中抓取网页的正文内容,你可以使用Python的requests库来获取网页的HTML源代码,然后使用BeautifulSoup库来解析HTML并提取所需的正文部分。下面是一个简单的示例代码,演示了如何实现这一过程。请注意,由于微信公众号文章可能有一些特殊的反爬措施,这段代码可能需要根据实际情况进行调整。首先,确保你已经在你的Colab环境中安装了beautifulsoup4和requests库。如果没有安装,你可以使用以下命令安装:然后,使用以下代码抓取并解析指定的网页内容:这段代码会打印出你提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即soup.find那一行)可能需要根据实际的HTML结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。[heading3]运行你的代码[content]然后,把这两段代码分别复制进去,并运行。先复制第一段:!pip install beautifulsoup4 requests运行后得到下图到这里的pip,就是之前提到的「给未来商店打电话」,用来获取工具接下来,点击左上方「+代码」按钮,新建一个新的代码块最后,复制后面的代码,并运行,获得下面的结果:?恭喜你,爬虫写好了?[heading3]Tips[content]在和AI配合写代码的过程中,如果你遇到了Bug,类似:你可以直接将问题报给ChatGPT,就像我这样然后再把ChatGPT给出来的结果粘贴回去(如果还不行,就反复调试)

写给不会代码的你:20分钟上手 Python + AI

大聪明我使用colab,请给我写一段代码,用于抓取https://mp.weixin.qq.com/s/KUnXlDlg-Rs_6D5RFpQbnQ的正文内容ChatGPT在Colab中抓取网页的正文内容,你可以使用Python的requests库来获取网页的HTML源代码,然后使用BeautifulSoup库来解析HTML并提取所需的正文部分。下面是一个简单的示例代码,演示了如何实现这一过程。请注意,由于微信公众号文章可能有一些特殊的反爬措施,这段代码可能需要根据实际情况进行调整。首先,确保你已经在你的Colab环境中安装了beautifulsoup4和requests库。如果没有安装,你可以使用以下命令安装:然后,使用以下代码抓取并解析指定的网页内容:这段代码会打印出你提供的微信公众号文章的正文内容。请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即soup.find那一行)可能需要根据实际的HTML结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。[heading3]运行你的代码[content]然后,把这两段代码分别复制进去,并运行。先复制第一段:!pip install beautifulsoup4 requests运行后得到下图到这里的pip,就是之前提到的「给未来商店打电话」,用来获取工具接下来,点击左上方「+代码」按钮,新建一个新的代码块最后,复制后面的代码,并运行,获得下面的结果:?恭喜你,爬虫写好了?[heading3]Tips[content]在和AI配合写代码的过程中,如果你遇到了Bug,类似:

什么是python

Python已经成为数据科学、机器学习、Web开发、自动化、科学计算等领域的首选语言之一。[heading2]自动化[content]Python在自动化方面的应用非常广泛,它以其简洁的语法和强大的库支持,成为自动化任务的首选语言之一。[heading3]办公软件自动化[content]work:python-docx用于创建、修改和提取Word文档的库。表格:openpyxl或xlsxwriter用于操作Excel文件,可以读取、修改和创建电子表格。PPT:python-pptx用于创建和修改PowerPoint演示文稿的库。PDF:PyPDF2:这是一个流行的库,可以分割、合并、裁剪和转换PDF文件的页面。它还可以添加自定义数据、查看选项和密码,以及从PDF中检索文本和元数据。[heading3]爬虫[content]requests:这是一个用于发送HTTP请求的库,非常适合进行网络请求的自动化。selenium:用于自动化Web浏览器交互,可以模拟用户行为,如点击、输入文本等。BeautifulSoup和lxml:这些库可以用于解析HTML和XML文档,从网页中提取数据。[heading3]测试自动化[content]unittest和pytest:Python内置的单元测试框架,以及一个第三方测试框架,都支持自动化测试[heading3]容器与虚拟化自动化[content]docker-py:Docker的Python客户端,可以用于自动化Docker容器的创建和管理。

Others are asking
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
从零开始学习python
以下是从零开始学习 Python 的相关指导: 一、最少必要知识与学习途径 1. 掌握最少必要知识,尽快开始并度过学习过程。 2. 参考。 3. 结合 ChatGPT,不懂的地方随时提问。 二、Python 是什么 1. Python 是一种高级编程语言,具有简单易学、功能强大、库丰富等特点。 2. 可以把 Python 想象成一个拥有很多工具(功能)的工具箱,能帮助完成画画、计算、整理东西等各种任务。 三、为什么使用 Python 1. 环境部署简单,下载两个软件,然后点点点就安装好了。 2. 语法简单,可读性强,是最适合小白的编程语言。 3. 应用广泛,可用于做网站、开发游戏、分析数据、自动化任务等。 四、Python 的起源 1. 1989 年,Guido van Rossum 在荷兰的 Centrum Wiskunde&Informatica(CWI)开始开发 Python。 2. 1991 年,Python 的第一个公开发行版 Python 0.9.0 发布,标志着 Python 正式诞生。 3. 1994 年,Python 1.0 发布,这是 Python 语言第一个具有稳定 API 的版本。 4. 2000 年,Python 2.0 发布,引入了列表推导式、内存管理和垃圾回收等特性。 5. 2000 年代初,Python 社区开始迅速增长,Python 的流行度上升。 6. 2008 年,Python 3.0 发布,不完全向后兼容,引入新的语法特性和改进,以提高语言的可读性和性能。 7. 2020 年 1 月 1 日,Python 2 正式停止支持,社区鼓励用户迁移到 Python 3。 8. 2020 年,Python 3.9 发布,引入了许多新特性,包括字典合并和更新操作符。 五、深入学习的内容 1. Python 基础 基本语法:了解变量命名、缩进等规则。 数据类型:熟悉字符串、整数、浮点数、列表、元组、字典等。 控制流:学习使用条件语句、循环语句控制程序执行流程。 2. 函数 定义和调用函数,理解参数和返回值。 了解作用域和命名空间,包括局部变量和全局变量的概念。 3. 模块和包 导入模块,学习使用 Python 标准库中的模块或第三方库。 了解如何安装和使用 Python 包扩展程序功能。 4. 面向对象编程(OOP) 类和对象:了解类的定义和实例化。 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系和实现多态。 5. 异常处理 理解异常及其工作原理。 学习使用 try 和 except 语句处理程序错误。 6. 文件操作 文件读写:学习打开文件、读取和写入文件内容。 文件与路径操作:处理文件路径,列举目录下的文件。
2025-04-12
请帮我生成一个大三毕业论文的题目,专业是关于计算机应用的,技术栈:Python(Pandas/Matplotlib),MYSQL,生成可视化图表,可生成HTML网站,包含数据分析,需要有最基本的功能,最好与生活中的某些东西联系起来
以下是为您生成的几个与生活相关的计算机应用专业大三毕业论文题目,供您参考: 1. 《基于 Python 和 MySQL 的居民日常消费数据分析及可视化网站构建》 2. 《利用 Python 和 MySQL 分析城市交通流量数据并实现可视化与网站展示》 3. 《基于 Python 和 MySQL 的家庭能源消耗数据分析与可视化网站设计》 4. 《运用 Python 和 MySQL 对校园图书馆借阅数据的分析及可视化网站开发》 5. 《通过 Python 和 MySQL 研究城市空气质量数据的可视化分析与网站实现》
2025-04-11
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
帮我写一个基于python的新能源充电桩管理平台
很抱歉,目前知识库中没有关于基于 Python 的新能源充电桩管理平台的相关内容。但我可以为您提供一个大致的框架和思路,您可以根据实际需求进一步完善和开发。 首先,您需要确定管理平台的功能需求,例如用户注册与登录、充电桩信息管理(包括位置、状态、充电功率等)、充电订单管理、计费系统、数据分析与报表等。 在技术实现方面,您可以使用 Python 的 Web 框架,如 Django 或 Flask 来构建 Web 应用。数据库可以选择 MySQL 或 PostgreSQL 来存储相关数据。 对于充电桩的状态监测和控制,可以考虑使用物联网技术,通过传感器获取充电桩的实时状态,并通过网络将数据传输到管理平台。 在计费系统方面,需要设计合理的计费规则和算法,并确保数据的准确性和安全性。 希望以上内容能为您提供一些帮助,祝您开发顺利!
2025-03-31
有没有好的AI爬虫工具
以下是为您推荐的一些 AI 爬虫工具: FireCrawl 开源爬虫工具:无需站点地图,可抓取任何网站的所有可访问子页面。抓取内容可转换为 Markdown 格式,支持 JavaScript 动态内容,并提供易用 API,简化内容爬取和转换。链接:https://x.com/imxiaohu/status/1780592067586269465 MediaCrawler:支持小红书、抖音、快手、B 站和微博等平台内容抓取,集成 IP 代理池防封,支持视频、图片、评论等多种数据格式保存。链接:https://github.com/NanmiCoder/MediaCrawler 、https://x.com/imxiaohu/status/1769569874601546034?s=20
2025-03-28
小红书爬虫智能体
以下是关于小红书爬虫智能体的相关内容: 创建智能体: 1. 输入人设等信息,放上创建的工作流。 2. 配置完成后进行测试。 工作流配置及注意事项: 1. 工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,可将 api_token 作为工作流 2 最开始的输入,用户购买后输入 token 再发布。 2. 对于 Coze 智能体,使用单 Agent 对话流模式,编排对话流时注意配置 cookie 等,使用代码节点进行数据处理,注意代码节点输出的配置格式。测试时找到一篇小红书笔记,试运行对话流,确保成功。发布时选择多维表格,注意输出和输入类型等配置。 智能体示例: 小众打卡地智能体,输入旅游目的地城市可推荐 3 个小众打卡地的小红书类文案及精美配图。其核心价值包括发掘特色景点、提供个性化建议、帮助获取高质量旅行参考信息及提供小红书文案。搭建思路重点包括录入小红书相关文案参考知识库、通过文本模型组成搜索词搜索并提取相关 url、滤除需安全认证网站等、提取小众地点输出及进行图片搜索等。
2025-03-15
使用llm的爬虫工具推荐下,开源免费
以下是为您推荐的开源免费的使用 LLM 的爬虫工具: 1. Jina 开源的网页内容爬取工具:Reader API 能从网址提取出核心内容,并将其转化为干净、易于大语言模型处理的文本,确保为您的 AI 智能体及 RAG 系统提供高品质的数据输入。 2. Scrapy 库(Python 语言):在 crawlab 可以做到分布式爬取,非常高效。 3. GPT Crawler:主要运用 typescript 进行数据爬取。 4. 在开源的项目中,为实现对含有 JavaScript 内容的网页抓取,不使用 Python 自己的 request 库,而是使用 playwright 之类的浏览器,并将网页内容按照一定规则转化成 markdown 格式,方便 LLM 后续的理解和抓取。 同时,对于爬虫工具的选择,还需根据您的具体需求和技术熟悉程度来决定。
2025-03-06
ai爬虫
以下是关于 AI 爬虫的相关信息: Firecrawl Extract 是一款只需文字提示就能爬取任意网络数据的工具。它具有以下特点: 1. 通过自然语言提示,能轻松将网页内容转换为结构化数据,无需手动写脚本。 2. 支持复杂数据提取,例如联系人信息、任务描述、动态价格等。 3. 兼容多语言与国际网站,能够抓取 JavaScript 渲染的动态页面内容。 4. 提供 API 集成,支持大规模数据处理,可提取数千个结果,解决上下文限制问题。 相关链接: 另外,对于不会代码的人,也可以尝试使用 Python 和 AI 来完成爬虫应用。例如,可以让 ChatGPT 帮忙写抓取特定文章(如地址为 https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ )正文内容的程序,然后在 Colab 里运行。
2025-02-08
免费的网页爬虫相关Ai工具
以下是一些免费的网页爬虫相关 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目方面: 在里有用 Cursor 做的网页浏览工具的参考实现。其中为实现对含有 JavaScript 内容的网页抓取,使用 playwright 之类的浏览器而非 Python 自己的 request 库,同时为方便 LLM 理解和抓取,将网页内容按规则转化成 markdown 格式保留细节基础信息。 对于搜索工具,duckduckgo 的免费 API 被用于参考实现,因其搜索质量优于 Bing 和 Google 的 API。
2025-01-25
有与网页爬虫相关的AI工具吗
以下是一些与网页爬虫相关的 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目中也有相关工具,如: 在里有用 Cursor 实现的网页浏览工具参考,其中为实现对含有 JavaScript 内容的网页抓取,使用了 playwright 之类的浏览器,将网页内容转化成 markdown 格式以支持 LLM 后续的爬虫。 对于搜索工具,duckduckgo 的免费 API 可避免一些质量问题。
2025-01-25
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13
AI的P图网页
以下为您介绍一些 AI 的 P 图网页: 1. 无界 AI:网址为 https://www.wujieai.cc/ ,新用户扫码注册可领取积分。基础关键词包括女生(如、白色蜘蛛战衣、金色短发等)和男生(如蜘蛛侠、笑容等)的相关描述,还有关键词分类(如人物、环境、光照、画幅视角、画质提升、画面风格等)。 2. ILLUMINARTY:网址为 https://app.illuminarty.ai/ ,用于鉴别 AI 绘图性质,但在测试中可能存在误判。 3. Adobe Photoshop 网页版:https://www.adobe.com/products/photoshop.html ,其中一项新技术能自动选择图像中的所有对象,使您更高效、准确和可控地编辑所选区域。您可以在此尝试:https://photoshop.adobe.com/id?intent=object_based_editing
2025-04-11
生成可视化网页的 prompt
以下是关于生成可视化网页的 prompt 相关内容: 1. 利用 AI 将 PDF 一键变成可视化网页: 整体思路来自归藏。 目前只有 Claude 3.7 Sonnet 效果最好,可将 prompt 发给能使用它的产品,如 Claude 自己的官网、trea 海外版、cursor 等。 Prompt 基本复制可用,但需将作者信息和媒体资源部分改成自己的内容。媒体资源若为网上现成图片,可复制图像链接;若为自己的图片,可使用图床服务生成公链,以 Markdown 格式贴到媒体资源处。 2. 为生成更漂亮的可视化网页编写的工具: 解决了模型生成结果过于随机的问题。 可在网页上自定义基础样式或随机生成,直到满意。 工具网址:https://60mcp23013.yourware.so/ 3. 3 月 25 日 AI 资讯汇总中的相关用例: 动态图表制作:输入“请给我输出红楼梦的人物关系,并与 html 的形式输出可视化图表,可以参考我给你的图表形式”,可添加参考的个性化图表示例,以 html 附件形式上传。 提供文案输出可视化网页:输入“来自归藏大大 我们输入我们的 AI 周刊内容”。 小红书卡片:输入“来自向阳乔木大大的提示词”。
2025-04-10
帮我写一篇用步进电机实现分拣的有关论文
很抱歉,目前没有关于用步进电机实现分拣的相关论文内容供参考。但我可以为您提供一个论文大纲的示例,您可以根据这个大纲来撰写论文: 标题:基于步进电机的分拣系统设计与实现 摘要:简述研究背景、目的、方法和主要成果。 一、引言 1. 介绍分拣系统在工业中的重要性。 2. 阐述步进电机在分拣系统中的应用优势。 二、步进电机的工作原理与特点 1. 详细解释步进电机的工作原理。 2. 分析其特点,如精度、速度控制等。 三、分拣系统的总体设计 1. 描述系统的整体架构和工作流程。 2. 确定所需的硬件设备和软件控制。 四、硬件设计 1. 选择合适的步进电机型号。 2. 介绍相关的驱动电路和传感器。 五、软件控制算法 1. 阐述控制步进电机运动的算法。 2. 描述如何实现精确的分拣动作。 六、系统调试与优化 1. 介绍调试过程中遇到的问题及解决方法。 2. 说明如何对系统进行优化以提高性能。 七、实验结果与分析 1. 展示实验数据和结果。 2. 分析系统的性能指标,如分拣准确率、速度等。 八、结论 1. 总结研究成果。 2. 展望未来的改进方向和应用前景。 希望以上内容对您有所帮助,祝您顺利完成论文!
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现
以下是一些可以帮助您生成技术路线图的 AI 工具和方法: 1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。 4. 可以用同一段提示词对比不同模型的输出,择优深挖。 5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。 7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。 8. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。 9. 在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息再来生成内容。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。
2025-04-08