Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

为什么有的大模型不能和lora一起用

Answer

大模型不能和 Lora 一起用可能有以下原因:

  1. 不配套:一般情况下,只有配套的大模型和 Lora 一起使用才能达到 Lora 的最佳效果。不同的大模型和 Lora 可能在特征、参数等方面不匹配。
  2. 触发条件:除了加载 Lora 外,还需要加入一些特定的触发词才能保证其正常使用,如果没有满足触发条件,可能无法协同工作。

同时,模型的类型和安装位置也很重要:

  1. 大模型(Ckpt)应放入 models\Stable-diffusion 目录。
  2. Lora/LoHA/LoCon 模型应放入 extensions\sd-webui-additional-networks\models\lora 或 models/Lora 目录。

使用 Lora 时要注意作者使用的大模型,也不排除一些 Lora 和其他大模型会产生奇妙的效果。此外,文件后缀名相似,难以通过后缀名区分文件类型,可通过特定网站检测。

Content generated by AI large model, please carefully verify (powered by aily)

References

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai|Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models-Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD-WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站-AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

【SD】软件原理傻瓜级理解

总结一下,LORA的强大,无论是画风,还是人物、物品,或者是动作姿态,都是可以固定下来,它所做的就是提炼图片特征。LORA和Embedding的区别一是在于体量上,Embedding的文件只有几十kb,而LORA的文件通常有几十上百兆,所以LORA的文件所承载的信息量是要远大于Embedding,尤其是在还原真人物品时,LORA的细节精度是Embedding无法比拟的。下载的LORA放在根目录的这个文件夹下【……\models\Lora】,使用的时候点击这个红色的小书,找到LORA的选项卡,任意点击一个想要的LORA就可以加载进去了。使用LORA的时候要注意看作者使用的大模型,一般情况下只有配套使用才能达到LORA最好的效果,当然也不排除有一些LORA和其他的大模型会产生一些奇妙的碰撞。除了加载lora以外,还需要加入一些特定的触发词,才能保证lora的正常使用。比如这个盲盒的lora,作者提示需要加入full body,chibi这些提示词才行。Hypernetworks主要是针对画风训练的一种模型,可以像lora一样加载进来。比如这种卡通Q版头像蒸汽波风格油画风格下载的文件放在根目录的这个文件夹下【…\models\hypernetworks】,使用的时候点击这个红色的小书,找到Hypernetworks的选项卡,任意点击一个想要的Hypernetworks就可以加载进去了。当我们下载了很多的模型、Embedding、Hypernetworks和LORA之后,我们会发现这些文件的后缀名几乎是一样,包括.pt/.safetensors/.ckpt等等,所以这些文件是无法通过后缀名进行区分的,那我们怎么判断这个文件到底是什么?该放到什么文件夹里呢?这里我们可以去到秋叶大佬整理的这个网站里面https://spell.novelai.dev/,把文件拖进去就可以看到是什么类型的文件。

第三期 黏土自由

可以多个lora组合使用,但是需要以一个为主,其他的强度在0.5或者以下,防止冲突CLAYMATE黏土lora(SDXL1.0)https://civitai.com/models/208168?modelVersionId=236248lora触发词claymation迪福森博士的黏土动画风格(SDXL1.0)lora触发词made-of-clayhttps://civitai.com/models/181962/doctor-diffusions-claymation-style-loraClay style(SD1.5)https://civitai.com/models/121119/clay-styleClay worldhttps://liblibai-online.vibrou.com/web/model/b8053c33f4834062808a0f4504a112b8/20240507-1715095286083-0009.safetensors?attname=%E7%B2%98%E5%9C%9F%E4%B8%96%E7%95%8CSD1.5_v1.5.safetensors提示词写Clay world,lora权重0.5-0.8,重绘幅度0.3-0.5,大模型自己挑一个。[heading5]大模型下载地址迪士尼真实卡通混合(SDXL1.0)[content]DisneyRealCartoonMixhttps://civitai.com/models/212426/disneyrealcartoonmix这个模型与黏土配合测试下来还不错,可能是因为迪士尼的浓眉大眼风格和黏土比较搭吧.模型触发词:modisn disney,modisn disney style大家也可以选择不同的模型测试比如:Playground AI's Playground v2.5 1024pxhttps://civitai.com/models/325263/playground-ais-playground-v25-1024px模型可以自由选择

Others are asking
Lora训练
以下是关于 Lora 训练的详细步骤: 创建数据集: 1. 进入厚德云模型训练数据集(https://portal.houdeyun.cn/sd/dataset)。 2. 在数据集一栏中,点击右上角创建数据集。 3. 输入数据集名称。 4. 可以上传包含图片+标签 txt 的 zip 文件,也可以只有图片没有打标文件(之后可在 C 站使用自动打标功能),或者一张一张单独上传照片,但建议提前把图片和标签打包成 zip 上传。 5. Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 6. 上传 zip 以后等待一段时间。 7. 确认创建数据集。 8. 返回到上一个页面,等待一段时间后上传成功,可以点击详情检查,预览到数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,会跳出所有上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。模型效果预览提示词则随机抽取一个数据集中的标签填入即可。 4. 训练参数这里可以调节重复次数与训练轮数,厚德云会自动计算训练步数。如果不知道如何设置,可以默认 20 重复次数和 10 轮训练轮数。 5. 可以按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 6. 然后等待训练,会显示预览时间和进度条。 7. 训练完成的会显示出每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 此外,还有一些相关的补充内容: Flux 的 Lora 训练准备: 需要下载几个模型:t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意: 1. 不使用的话它们放到哪里都可以,甚至放一起一个文件夹,只要知道“路径”,后面要引用到“路径”。 2. 因为是训练,不是跑图,训练的话,模型就用 flux1dev.safetensors 这个版本,编码器也用 t5xxl_fp16.safetensors 这个版本最好。 下载脚本和安装虚拟环境: 1. 下载脚本: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 2. 下载完解压,在文件中找到 installcnqinglong.ps1 这个文件,右键选择“使用 PowerShell 运行”,新手的话这里就点击“Y”,然后等待 1 2 小时的漫长下载过程,下好了之后最后会提示是否下载 hunyuan 模型,选择 n 不用下载。 SD 训练一套贴纸 LoRA 模型: 1. 在 lora 训练器的根目录下,点击【A 强制更新国内加速】,跑完即可关闭窗口。 2. 双击【A 启动脚本】,请保持终端一直运行,不要关闭。出现下列代码即为启动成功。 3. 滚动至最下点击【LoRA 训练】或者直接点击左侧菜单【LoRA 训练】。
2025-03-30
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
lora微调
LoRA 微调相关内容如下: 微调脚本: LoRA 微调脚本见:,单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调脚本见:。 加载微调模型: 基于 LoRA 微调的模型参数见:基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数,示例代码中,base_model_name_or_path 为预训练模型参数保存路径,finetune_model_path 为微调模型参数保存路径。 对于全量参数微调的模型,调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 此外,在 Comfyui AnimateDiff 项目中,有一个关键的 lora 对图像模型进行了微调,lora 地址为 https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_adapter.ckpt,lora 的强度越高,画面越稳定,但需在合理范围。 在 100 基础训练大模型的 Lora 生图中,模型上的数字代表模型强度,可在 0.61.0 之间调节,默认为 0.8。您也可以自己添加 lora 文件。正向提示词输入您写的提示词,可选择基于提示词一次性生成几张图,选择生成图片的尺寸(横板、竖版、正方形)。采样器和调度器新手小白可默认,迭代步数可在 2030 之间调整,CFG 可在 3.57.5 之间调整,随机种子1 代表随机生成图。所有设置完成后,点击开始生成,生成的图会显示在右侧。若某次生成结果不错,想要微调或高分辨率修复,可点开图,下滑复制随机种子,粘贴到随机种子处,下次生成的图会与此次结果近似。若确认合适的种子和参数,想要高清放大,点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 2030 之间,重回幅度在 0.30.7 之间调整。
2025-03-22
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置随意,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程,完成后提示是否下载 hunyuan 模型,选择 n 不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,选择上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入。 5. 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数。若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 6. 按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择 Lora 和调节参数。
2025-03-15
lora模型
LoRA 模型相关信息如下: Fooocus 程序默认用到了 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。LoRA 模型默认放在 Fooocus_win64_1110\\Fooocus\\models\\loras 。如果单独安装,需要下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,也可共用模型(大模型和 LoRA),可在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中修改路径为秋叶包模型对应的路径,配置好后点击 run.bat 文件启动。 Lora 全称 LowRank Adaptation Models,中文翻译为低阶自适应模型,作用在于影响和微调画面,通过它可以再现人物或物品的特征。大模型训练复杂且对电脑配置要求高,LoRA 采用在原模型中插入新的数据处理层的方式,避免修改原有模型参数,训练轻量化,显存达到 6G 即可开启训练。 有利用新版 SDXL 生成的 lora 如针线娃娃,需要使用 SDXL1.0 的模型才可以运行,触发词是 BJ_Sewing_doll。想体验可添加公众号【白马与少年】,回复【SDXL】。
2025-03-09
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用机器人一起直播会爆火吗
之前有过相关观点的文章《 。“人何以为人”是关注 AI 的教育届朋友们频频探讨的话题,今晚一起聊 AI 的教育创新,预计会碰撞出不少火花。但关于用机器人一起直播是否会爆火,目前无法给出确切的结论,其效果可能受到多种因素的影响,如直播内容的质量、机器人的表现、观众的兴趣和需求等。
2025-02-25
适合团队一起应用开发的AI
以下是一些适合团队一起应用开发的 AI 类型及示例场景: 1. 智能体应用(Assistant): 简介:基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能。 示例场景:客户服务(了解诉求、解决问题,如查询订单状态、处理退款等)、个人助理(管理日程安排、提醒事项、发送邮件等)、技术支持(了解技术问题,提供解决方案,排除故障)。 参考链接: 2. 工作流应用(Workflow): 简介:将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程。 示例场景:AI 翻译(实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量)。 参考链接: 3. 智能体编排应用: 简介:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,使多个智能体自动规划和执行任务。 示例场景:综合调研报告(组建报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体)、软件开发团队(组建智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体)。 参考链接: 此外,还有以下摊位展示的相关 AI 应用: 1. 简单高效地构建 AI+装修,AI+行业应用平台,并进行模型的训练和微调。 2. ai+家庭教育咨询与体验服务。 3. 摄影+AI 效果叠加。 4. ai 模型部署,使用,交流的一站式平台。 5. 自传语伴:帮助普通人轻松撰写自传,用户通过与 AI 聊天讲述人生故事,生成自传。 在 6 月 3 日的参赛 bot 试玩分享中,讨论了多个团队的相关产品,包括: 1. AI 秒学团队的儿童绘本故事生成:将新闻转化为绘本故事,结合李普村的 AI 会话和分镜,使用 ByteDance AI 画图。 2. Lux 珀尔团队的卡通头条:在海外版搜索新闻应用中,根据用户选择生成不同风格的图片。 3. 吴琪的 AI 工具:通过简单提问生成小朋友喜欢的图片。 4. 核心搭子团队的产品:帮助父母辟谣的 AI,可识别三种体裁,根据疑问生成对应回复并保存知识,有热情和冷淡回复两种模式。 5. 学以致用团队的产品:提供日本市场实时信息的工具。 6. 李小白聊天机器人:具备陪聊、诗句生成、新闻展示等功能。 7. 两款智能写作机器人:喵喵日报(从 100 条新闻中挑选 5 条科技咨询定时推送,可根据用户问题自动搜索和重新组稿)、芋头小宝(帮助用户列出文章框架、生成配图以及汇总新闻等)。
2025-02-18
我想做一个猫咪做饭的短视频,有五个分镜头。我先用文生图生成图片,在用图片生成视,最后剪辑在一起。问题是文生图的时候,生成的图片,效果不太理想
以下是为您提供的一些可能有助于改善文生图效果不理想问题的建议: 1. 仔细检查您输入的画面描述,确保描述清晰、具体、准确,包含足够的细节和特征,以便模型更好地理解您的需求。 2. 尝试调整关键词和描述的侧重点,突出您想要的关键元素,比如猫咪做饭的动作、表情、厨房环境等。 3. 更换不同的文生图模型或工具,有些模型可能在某些特定类型的图像生成上表现更出色。 4. 参考其他优秀的类似主题的图像,学习其构图、色彩、光影等方面的处理方式,从而优化您的画面描述。 5. 多次尝试生成,并对每次生成的结果进行分析和总结,找出问题所在,逐步改进描述。
2025-01-17
我是一名一线教师,想要学习如何搭建智能体。请跟我一起制定合适的进阶路径和推荐资源链接。
以下是为您制定的学习搭建智能体的进阶路径和推荐资源链接: 进阶路径: 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户可获得 2000 万 Tokens。 可通过充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;免费 GLM4Flash 语言模型/ 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 共学营报名赠送资源包。 2. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建。 推荐资源链接: 1. 智谱 BigModel 共学营第二期:把您的微信变成超级 AI 助理 https://bigmodel.cn/ 2. 教师的 AI 减负指南 3. 提示词培训课——Part2 在搭建智能体的过程中,您需要像导演一样,编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂的任务拆分成科学合理的步骤,并且让前一步的结果都成为后一步的基础。同时,不要害怕犯错,每一次尝试都是向成功迈进的一步。
2024-12-30
我想ai帮我画一个八一起义纪念碑的简笔画,应该用什么工具
您可以使用以下工具来实现让 AI 画八一起义纪念碑的简笔画: 1. ChatGPT:您可以拍下自己画的简笔画,上传给 ChatGPT,并请一个叫“Cartoonize Yourself”的 GPTs 将其转换为画作。 2. “dodoboo”App:由 Hidecloud 和 Sharpmark 创造,无需科学上网,可用 AI 将简笔画转为精致作品。 需要注意的是,这些工具可能需要您根据实际情况进行探索和尝试,以获得满意的效果。
2024-12-26
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
我需要在一个软件上实现自动化抢单流程,并在抢单成功后自动在软件中添加备注信息。要求是点击频率不能太高。请问目前有什么ai软件可以帮我实现吗
目前没有特定的 AI 软件能够直接满足您在一个软件上实现自动化抢单并自动添加备注信息,同时控制点击频率不能太高的需求。通常这类需求可能需要通过编程和定制化开发来实现,利用相关的编程语言和工具,根据具体软件的接口和规则进行开发。
2025-03-24
我需要在一个抢单软件上实现自动化抢单流程,并在抢单成功后自动在软件中添加备注信息。要求是点击频率不能太高。请问目前有什么ai软件可以帮我实现吗
目前没有专门的 AI 软件可以直接帮助您在抢单软件上实现这样的自动化流程。这种需求可能涉及违反软件使用规则和公平竞争原则,并且存在一定的法律风险。建议您通过合法合规的方式参与抢单活动。
2025-03-24
comfyUI能干什么?不能干什么?
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 应用场景包括: 1. 作为一个强大的可视化后端工具,可以实现 SD 之外的功能,如调用 api 及本文所讲的内容等。 2. 可根据定制需求开发节点或模块。 3. 用于抠图素材的制作,如绿幕素材的抠图,还可以自动生成定制需求的抠图素材。 官方链接:https://github.com/comfyanonymous/ComfyUI
2025-03-21
我在完成一篇论文,能不能给我一些论文相关的AI提示词
以下是为您提供的一些论文相关的 AI 提示词示例: 1. 对于法律文章写作: 敕令法律文章撰写 author:叁随道人 version:1.0(20240626) language:中文 2. 对于一般性的论文写作: 这意味着您不能期待设计一个完美的提示词,然后 AI 百分百给到您一个完美的符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。您要给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生,您也需要在对话中来限缩自己思维中的模糊地带。 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到您想要的东西,毕竟很多时候其实您自己刚开始也不知道自己想要什么。 3. 对于文生图相关的论文: 英文为:,drawing,paintbrush 。括号和:1.2,都是用来增加权重的,权重越高在画面中体现越充分,同样提示词的先后顺序也会影响权重。 反向提示词:NSFw,,(toomany finger
2025-03-08
AI能做什么?无所不能么
AI 具有广泛的应用和能力,但并非无所不能。以下是 AI 能够做到的一些方面: 在医疗领域,AI 可以辅助疾病的预测、诊断和治疗,例如通过训练神经网络预测蛋白质结构,从而推进结构生物学的发展,帮助预防抗生素耐药性、推进疾病研究以及加速对抗塑料污染。 在科学研究方面,AI 能够促进科学发现,例如用于拼凑出首张距离地球 5500 万光年的黑洞图像,还能解决长期困扰科学家的蛋白质折叠难题。 在医疗检测方面,AI 有助于提高疾病检测效率,如应用于乳腺癌筛查,使更多患者能更快接受筛查,让临床医生有更多时间为患者服务并提供更快速的治疗。 在农业领域,AI 机器人可以提高农业生产效率。 然而,对于一些终极问题,答案不可避免且坚决是否定的。但这并不意味着 AI 不能重要地帮助科学进步,例如在非常实用的层面上,语言模型可以为计算功能提供新的语言接口,并通过其知识提供高水平的“自动完成”,辅助科学工作中的“传统答案”或“传统的后续步骤”。
2025-03-08
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07