Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是AI板块的“自然语言处理”

Answer

自然语言处理(NLP)是人工智能和语言学领域的分支学科。它包括让电脑对输入的语言进行认知和理解,将其转化为有意义的符号和关系,并根据目的进行处理。自然语言处理涵盖了多个方面和步骤,基本包括认知、理解、生成等部分。其旨在处理和运用自然语言,例如把计算机数据转化为自然语言。自然语言处理涉及多门学科,如概率论、统计学、逼近论、凸分析、计算复杂性理论等。在计算机科学中,为了让计算机能理解和处理自然语言这种复杂多样、具有语境依赖性和模糊性的信息,引入了 Token 化的概念,将复杂的文本数据分解成更小、更易于计算机处理的单元,如单词、短语或标点符号,从而更有效地进行语言处理和提取意义。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。[heading1]自然语言是什么?[content]自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言。是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言处理包括多方面和步骤,基本有认知、理解、生成等部分。[heading1]AI的推理是什么?[content]推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程。这也有叫做预测或推断。[heading1]AI的训练是什么?[content]训练是指通过大数据训练出一个复杂的神经网络模型,通过大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练需要较高的计算性能、能够处理海量的数据、具有一定的通用性,以便完成各种各样的学习任务。

【Token趣闻】AI收费为何要按Token计费?一探究竟!

计算机的核心语言是由0和1组成的二进制代码,这是所有程序和数据最基本的表现形式。无论是我们使用的Python、Java等高级编程语言,还是各种多媒体文件,如图片和视频,都会被转换为这种机器语言。在传统的计算机科学中,专家们尽最大努力将现实世界的复杂性抽象化,通过定义明确的数据类型如字符串(一系列文字)和整数(数字)来处理信息。这种方法在处理数学计算或数据库查询等结构化数据时非常有效。然而,随着技术的发展和人们的需求增加,我们希望计算机不仅能处理数值和代码,还能理解和处理自然语言,即我们人类的日常语言。这就引入了自然语言处理(NLP,Natural Language Processing)的领域,它旨在让计算机理解、解释和生成人类语言。考虑到自然语言的特点,包括其多样性、语境依赖性以及模糊性,我们面临的不再是简单的1+1=2这类问题。我们现在要解决的是如何让计算机理解诸如“今天是星期五,周末去哪玩呢?待在家里学AI如何?”这样的语句,并进一步分析其情绪或将其翻译成其他语言。在这种场景下,传统的数据类型不再足够使用。这就是为什么我们需要引入Token的概念。Token化是将复杂的文本数据分解成更小、更易于计算机处理的单元,如单词、短语或标点符号。这样,计算机就可以更有效地进行语言处理,从文本中提取意义,而不仅仅是计算字符数。

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Nats|奈特|AI|1||||ROW()-1|Natural Exponential Decay|自然指数衰减|AI|1||||ROW()-1|Natural Language Generation|自然语言生成|AI|1||||ROW()-1|Natural Language Processing|自然语言处理|AI|1||||ROW()-1|Nearest Neighbor|最近邻|AI|1||||ROW()-1|Nearest Neighbor Classifier|最近邻分类器|AI|||||ROW()-1|Nearest Neighbor Graph|最近邻图|AI|||||ROW()-1|Nearest Neighbor Regression|最近邻回归|AI|||||ROW()-1|Nearest-Neighbor Search|最近邻搜索|AI|||||ROW()-1|Negative Class|负类|AI|||||ROW()-1|Negative Correlation|负相关法|AI|||||ROW()-1|Negative Definite|负定|AI|1|||

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31
flowith根据自然语言构建一个直接使用的工作流吗,如何向flowith提出要求
Flowith 可以根据自然语言构建工作流。即使没有专业编程技能,只要能用清晰的自然语言描述出想要的各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。 使用工作流的步骤如下: 1. 配置工作流: 在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。 该节点支持 JavaScript、Python 运行时,需注意不同运行时的特定事项。 可在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,也可选中代码片段通过快捷键唤起 AI 并输入自然语言让其修改代码。 2. 通过工作流数据库节点操作数据表: 在工作流中添加数据库节点对数据表进行操作,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作添加并配置工作流节点: 单击页面顶部的工作流页签,然后单击创建工作流。 输入工作流名称和使用描述,然后单击确认。 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 根据相关信息配置数据库节点,包括输入添加 SQL 执行中需要的参数,输入要执行的 SQL 语句,可单击自动生成使用大模型生成 SQL。 需注意不支持 Select语法、多表 Join 操作,最多返回 100 行数据。在配置数据库节点前,要确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。
2025-03-26
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
是否可以理解为agent生成工作流的过程,是通过与agent进行自然语言实现的,而不用预设固定的规则和流程
Coze 是一个 AI 平台,它允许用户创建自己的 AI Bot。在 Coze 中,用户可以使用工作流来设计 Bot 的行为。工作流是由一系列大模型组件组成的,每个组件都可以执行特定的任务,例如解析用户输入、进行条件判断和生成回答等。 Coze 的工作流设计支持动态用户需求传入,这意味着用户可以通过自然语言来动态调用条件流程,而不是通过传统编程的固定条件匹配和调用。这种设计使得 Coze 的 Bot 更加灵活和智能,能够更好地满足用户的需求。 下面是一个 Coze 工作流的示例: 1. 第一步是使用大模型组件解析用户输入的信息,以确定它是否满足提示词条件。 2. 如果满足条件,则执行下一步。 3. 如果不满足条件,则再次调用大模型组件,其提示词与 AI Bot 的提示词几乎相同。 4. 最后,到达结束节点,生成回答。 通过这种方式,Coze 的 Bot 可以根据用户的输入动态调整其行为,以提供更准确和有用的回答。
2024-05-08
LlamaIndex 对比 langchain Extraction 哪个对提取自然语言中的格式化数据更好一些?
如果您需要从自然语言文本中提取格式化数据,LLamaIndex 可能是一个更好的选择,因为它提供了各种 Pydantic 程序,可以帮助您将输入的文本字符串转换为结构化的 Pydantic 对象。 然而,如果您的任务不涉及自然语言,或者您更熟悉 LangChain 的工作方式,那么 LangChain Extraction 也可能是一个不错的选择,因为它可以帮您提取非自然语言文本中的格式化数据。
2024-04-01
处理 excel 表格 的 AI 工具
以下是一些可用于处理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,如数据分析或格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. Ajelix:可处理 Excel 和 Google Sheets 表格的 AI 工具,链接为。 6. FormX.ai:能够自动从表格和文档中提取数据的 AI 工具,链接为。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
关于处理法律事务的提示词
以下是关于处理法律事务的提示词相关内容: 1. 陶力文律师观点:不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应将提示词视为相对完善的“谈话方案”,成果在对话中产生。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入提示词就得到想要的东西。陶律师习惯用的大模型是 KIMI,也可使用 GPT、文心一言、豆包等。其个人 Prompt 库取名为【元始洞玄灵宝枢机 AI 符法集成道藏】,库里每篇灵机符箓命名为【敕令 XXXX】。【箓】描述符箓整体所属、版本,【符】关键,涉及具体操作步骤和方法,开头赋予 AI 身份划定边界。 2. 潘帅观点:律师常用 Prompt 场景包括案例检索和类案检索。案例检索最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在问题。案例检索的 Prompt 指令词结构为【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】,并列举了多个具体例子,如商标侵权案件中“混淆可能性”标准的判例检索等。
2025-04-03
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31
作为企业管理者,面对AI的到来,应该主动学习哪些板块功能。能带来哪些增效
作为企业管理者,面对 AI 的到来,应主动学习以下板块功能,以带来增效: 1. 法律法规方面:了解如《促进创新的人工智能监管方法》等相关法规,明确在 AI 应用中的责任和风险,增强公众信任,促进合规创新。 2. 创意与设计方面:掌握 AI 加持的创意与设计,如利用视觉 AI 技术提升创意设计工作效率,将 AI 融入设计流程,实现自动化、提升个性化和降低成本。通过 AI 自动化设计过程中的部分环节,使设计师专注于核心创意,提高生产力和速度;基于用户数据生成个性化内容,满足不同受众需求;降低人工成本,为中小企业提供更优质的设计服务。 3. 创新应用方面:关注 AI 在不同领域的创新应用,例如利用 AI 解决重要问题,平衡风险与机会,推动经济增长和繁荣,减少监管不确定性,鼓励投资和采用 AI,创造更多就业机会并提高工作效率。
2025-03-21
通往GAI之路中AI提示词板块李继刚的提示词如何使用
李继刚的提示词使用方法如下: 从最佳实践中的收录内容开始学习,其结构化提示词能让模型给出更优质、完整的答案。 操作时可点开并复制相关提示词,将复制内容丢进大语言模型对话,会有不同效果。 近期提示词有升级,李继刚老师将提示词玩到新高度,cloud 等大语言模型可直接显示编译结果内容。 输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 李继刚老师会在 13 号讲创作思路。 从工程视角看,一个提示词就能用于写游戏,如现在的 AI 编程(如 CURSOR)能做出开源小游戏,可拿来使用、交流并研究内容、优化改造。
2025-03-09
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
给我写一段AI产品经理板块的介绍,一小段话,用于在公司内部的科技论坛上
在公司内部的科技论坛上,为您介绍 AI 产品经理板块: AI 产品经理可大致分为三个层级: 1. 入门级:能通过 WaytoAGI 等开源网站或课程了解 AI 概念,使用 AI 产品并动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两条路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具验证想法。 3. 落地应用级:有成功落地应用案例并产生商业化价值。 传统互联网 PM 也有类似的三个层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 对 AI 产品经理的要求是懂得技术框架,关注场景、痛点和价值。同时,为您列举一些岗位技能要求,如本科及以上学历,计算机科学等相关专业背景,熟悉多种 AI 工具的使用及原理,具备创新思维等。我们身边也有相关案例,如枫 share、行远等都是从事相关工作的产品经理。
2025-01-23
逐步解释说明waytoagi在ai绘画板块有什么样的内容,做了什么样的推动。
WaytoAGI 是一个由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,目前知识库的内容覆盖:AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践。 WaytoAGI 社区介绍(15 分钟):介绍 WaytoAGI 社区的历史、目标和主要活动。展示社区如何推动 AI 技术和艺术的结合。 AI 画展 Workshop 活动流程:详细介绍 Midjourney、DallE、Stable Diffusion 等前沿工具的基本原理和应用方法,分析了社区中杰出共建者及其开发的 AI 模型,梳理了 AI 视频、AI 图片的制作方式。参与者们用 Stable Diffusion 制作了关于“大寒”节气的 AI 海报,并策划了以杭州为主题的 AI 画展:「诗画西湖」、「古韵新声,AI 与金石篆刻的交响」、「杭州五千年历史纪实影展」,展示了 AI 与艺术文化的无限可能性。 AI 自媒体涨粉:在钱塘江边的会客厅中,WaytoAGI 与大家分享了目前最热门的各类 AI 短视频的类型和各类视频制作的 AI 工具,并以 AI 为主题进行自媒体短视频的创作。大家现场动手,分小组协作,现场 1 小时内快速创意制作了 AI 相关的短视频。通过团队合作,大家创造了各种引人入胜的短视频内容,并在社交平台上获得了显著的流量和关注。 AI+东方哲学:探讨 AI 在东方哲学中的应用和启示,探索 AI 与东方哲学相结合的创新路径。 AI 赚钱实验室:介绍 AI 技术在商业领域的应用和赚钱机会,分享 AI 创业和商业模式的经验。
2024-05-29