Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze工作流中数据库如何应用?主要是返回数据

Answer

在 Coze 工作流中,数据库的应用如下:

  • 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。
  • 数据库节点的输入:用户可以定义多个输入参数。
  • 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。
  • 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。
  • 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。

相关参考文档和示例:

  • 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html
  • 国内参考文档:https://www.coze.cn/docs/guides/use_workflow
  • 国内版本示例:
    • 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news
    • 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm
    • 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code
    • 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content
    • 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent

在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数Coze平台支持的节点类型:LLM(大语言模型):使用输入参数和提示词生成处理结果。Code(代码):通过IDE编写代码处理输入参数,并返回输出值。Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。Condition(条件判断):if-else逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支Variable(获取变量):从Bot中获取变量作为参数在工作流中使用Database(数据库):在工作流中使用提前配置在Bot数据库中的数据[heading3]创建和使用工作流[content]这一块官方有现成的教程参考:海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html国内参考文档:https://www.coze.cn/docs/guides/use_workflow国内版本还提供了一些示例,学习工作流强烈建议大家跟着实操一遍:搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news使用LLM处理问题:https://www.coze.cn/docs/guides/workflow_use_llm生成随机数:https://www.coze.cn/docs/guides/workflow_use_code搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent

大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库

大模型节点的输入和输出输入:可以自己定义数量,本质就是给大模型的参数Prompt:大模型的提示词,用来设定大模型的角色和工作内容,其中可以使用{{}}来使用输入变量输出:大模型的回答提示词如下:[heading5]数据库节点[content]数据库节点的输入和输出输入:用户可以定义多个输入参数输出:如果数据库是查询作用,则输出会包含查询出来的内容SQL:通过SQL语句告诉数据库要执行的动作注意:这里的SQL语句我是让AI帮我自动生成的哦,具体请看第二张图但是我对SQL进行了一些改动:将question和llm_answer进行了变量替换,并且外围加上了""[heading5]End节点[content]End节点也是工作流中的默认节点,其作用是最终结果的输出其输出方式主要有两种直接返回变量,由Bot根据变量生成回答根据变量来使用特定的格式来直接生成回答我这里使用的是第二种,然后在Answer content中指定了回答的格式[heading5]测试工作流[content]编辑完成的工作流是无法直接提交的,需要进行测试。1.点击右上角的test run2.设定测试参数1.查看测试结果1.发布当工作流完成之后,就可以去调试Bot啦

【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)

循环体内部——数据库节点数据库节点:用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的url和开始节点的key(也就是server酱的sendkey,这里我们重命名为suid了)因为这个Bot最开始设计的时候,就考虑到可能有多个用户会同时使用这个Bot设置公众号推送内容,每个用户设置的公众号内容可能不一样,每个用户的要推送的微信号肯定也不一样,所以这里使用server酱的sendkey作为了用户的唯一标识,重命名为了suid所以这里查询数据库需要两个值,文章url和用户的suid,来判断这名用户的这篇文章是否推送过SQL语句是AI写的,直接复制就成记得设置一下输出项「combined_output」这步是必须项:Coze平台的逻辑是数据库是与bot绑定的,所有如果要使用数据库功能,需要在bot中设置一个相同名称和数据结构的数据库进行绑定,具体设置方法参见「相关资源」循环体内容——选择器判断数据库查询的内容是否为空,如果是空,证明数据库中没有查到,这篇文章没有给这名用户推送过,使用「文本处理」节点,拼接这篇文章的完整信息,保证信息一致性string1:开始节点的key,也就是server酱的sendkey,用来识别用户string2:循环节点item值中的urlstring3:循环节点item值中的titlestring4:循环节点item值中的author拼接为如下格式,方便输出,并让后边节点使用右下方的「文本处理」节点没有实际作用,输入项随便写,主要是为了处理数据库查询到已经给这名用户推送过这篇文章情况下的占位项,否则工作流会报错设置循环节点输出项,选择循环体中「输出新文章内容」拼接后的字符串

Others are asking
dify工作流中agent节点怎么使用
在 Dify 工作流中使用 Agent 节点的步骤如下: 1. 搭建工作流框架: 进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求自定义工作流信息,点击确认完成新建。 左侧「选择节点」模块中,根据子任务需要,实际用上的有插件(提供能力工具拓展 Agent 能力边界)、大模型(调用 LLM 实现文本内容生成)、代码(支持编写简单脚本处理数据)。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点完成框架搭建。 2. 测试 Agent 节点功能: 完成任何一个节点的配置后,都需要进行试运行测试以验证节点的运行效果。 步骤一:点击「测试该节点」。 步骤二:按格式要求输入待测试的输入内容,如果是 array 等其他格式,请自行对话 AI 或搜索网络确认格式要求。 步骤三:点击「展开运行结果」,检查输入、输出项是否有误。如果有误,请依次检查“测试输入内容”、“节点配置”是否有误,以及优化“提示词”以提升对生成内容的约束力。当多次测试时输入与输出都符合预期,就可以进入下一个子任务的配置。
2025-04-05
工作流中如何调用插件
在工作流中调用插件的方式如下: 1. 触发器触发: 为 Bot 设置触发器,可选择定时触发或事件触发。 触发时执行任务的方式包括 Bot 提示词、调用插件、调用工作流。 调用插件时,需为触发器添加一个插件,触发后 Bot 会调用该插件获取返回结果并发送给用户。 一个 Bot 内的触发器最多可添加 10 个,且仅当 Bot 发布飞书时生效。 2. 在 Bot 内使用插件: 在 Bots 页面,选择指定 Bot 并进入 Bot 编排页面。 在 Bot 编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,需检查被添加的插件是否可以正常使用。 在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。 在 Bot 的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。 3. 在工作流中使用插件节点: 在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。 在页面左侧,单击插件页签。 搜索并选择插件,然后单击加号图标。 在工作流的画布内,连接插件节点,并配置插件的输入和输出。 需要注意的是,即使是官方插件也可能存在不稳定的情况,需要自己去尝试,找到适合当前场景的插件。
2025-01-14
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
在 COMFY UI 中,关于 Tile 平铺预处理器怎么工作流中怎么使用
在 ComfyUI 中,关于 Tile 平铺预处理器的使用方法如下: 1. 平铺和切片都是用于处理大尺寸视频的技术,可以帮助在有限的 GPU 内存下处理高分辨率视频。 tile_sample_min_height:96,最小平铺高度。 tile_sample_min_width:96,最小平铺宽度。这两个参数定义了在使用平铺时的最小尺寸。 tile_overlap_factor_height:0.083,高度方向的重叠因子。 tile_overlap_factor_width:0.083,宽度方向的重叠因子。这些因子决定了平铺时各个块之间的重叠程度。 enable_vae_tiling:设置为 false,表示不启用 VAE(变分自编码器)的图像平铺。 enable_vae_slicing:设置为 false,表示不启用 VAE 切片。如果启用了平铺(tiling),它会将大图像分割成小块进行处理,然后再组合起来,这有助于处理大分辨率的视频。VAE 切片(如果启用)可以通过分割输入张量来分步计算解码,这有助于节省内存。 2. 将您的 ComfyUI 更新到最新。 3. 将 clip_l 和 t5xxl_fp16 模型下载到 models/clip 文件夹。确保您的 ComfyUI/models/clip/目录中,有 t5xxl_fp16.safetensors 和 clip_l.safetensors,您可以改用 t5xxl_fp8_e4m3fn.safetensors 来降低内存使用量,但如果您的 RAM 超过 32GB,建议使用 fp16。跑过 flux 就有这些模型,没有的话翻之前文章有下载。 4. 在您的 ComfyUI/models/vae/文件夹中,有 ae.safetensors。 5. 将最开始下载的 flux1filldev.safetensors 放于 ComfyUI/models/unet/文件夹中。 6. 使用 flux_inpainting_example 或者 flux_outpainting_example 工作流。
2024-12-26
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
AI如何在平面设计工作流中提高效率,具体的步骤有哪些
以下是 AI 在平面设计工作流中提高效率的具体步骤和相关信息: 1. 工具选择 主要工具:Midjourney 和 Stabel Diffusion。 辅助工具:RUNWAY 和 PS beta 等。 2. 工作流效果 创意多样:设计解决方案更为多样和创新,项目中不同创意概念的提出数量增加了 150%。 执行加速:AI 生成的设计灵感和概念显著缩短了创意阶段所需时间,设计师在创意生成阶段的时间缩短了平均 60%。 整体提效:在整体项目的设计时间减少了 18%。 3. 提升能力的方法 建立针对性的 AI 工作流:使用 lora 模型训练的方式,生成特定的形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。 实用的模型训练:在营销活动期间,根据市场环境和消费者偏好的变化迅速调整 lora 模型。 AI 设计资产储备:建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。 此外,对于建筑设计师审核规划平面图,以下是一些可用的 AI 工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入需求自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 Fast AI 人工智能审图平台:形成全自动智能审图流程,实现数据的汇总与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2024-11-12
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
画数据库关系图,用什么al软件好
以下是一些可以用于画数据库关系图的 AI 软件和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括数据库关系图,用户可通过拖放界面轻松操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如数据库的逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建包括数据库逻辑、功能和部署等多种视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建数据库逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括数据库逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建数据库逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建包括数据库逻辑视图和部署视图等各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建包括数据库逻辑视图和部署视图等多种视图。
2025-03-22
AI可以做数据库的数据分析
AI 可以用于数据库的数据分析,以下是相关内容: ChatGPT 助力数据分析的流程: 逻辑流程图如下: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 相关问题与技巧: 1. SQL 分析: 反复校验是否为 SELECT SQL 语句,不仅因为 AI 不完全可控,还因为不能相信用户输入,防止恶意操作。非查询类 SQL 坚决不通过,提示不支持此类请求。 到 AI 分析步骤拼接上下文,是为了让 GPT 更好理解数据和字段的意义,使分析更准确。 针对表结构长类型字段,不允许直接查询,防止 token 消耗过多。最好告诉 GPT 只允许查询哪几个字段,或者用哪几个 SQL 函数,尽量让 GPT 生成可控。 2. 个性化分析: 用户上传的数据解析后需判断数据格式是否符合要求,超长可限制截取前面若干项,防止 token 消耗过多。 在前端解析用户上传的数据,分析完可直接用于渲染数据图表,无需后端再返回。 支持用户补充输入,可简单描述数据、字段意义或作用,用于辅助 AI 分析。对于易理解语义化的字段名,可不描述,GPT 也能识别。遇到多维度数据,为保证准确性,可输入“以 xxx为维度分析”或“这是 xxx 数据”。 AI 术语库中的相关术语: |术语 ID|原文|译文|领域|易混淆|缩写|不需要提醒| |||||||| |ROW1|DataDriven Spectral Analysis|数据驱动的光谱分析|AI||| |ROW1|DataMining|数据挖掘|AI|1|| |ROW1|Database|数据库|AI||| |ROW1|DE Algorithm|差分进化算法|AI|1|| |ROW1|Deeplift|DeepLift 模型|AI||| |ROW1|Dendrogram|树状图|AI||| |ROW1|Density Functional Theory|密度泛函理论|AI||| |ROW1|DensityBased Spatial Clustering Of Applications With Noise|DBSCAN 密度聚类|AI||| |ROW1|Descriptor|描述符|AI||| |ROW1|DFT Calculations|DFT 计算|AI||| |ROW1|Dice Similarity|戴斯相似度|AI||| |ROW1|Differential Evolution|差分进化|AI|||
2025-03-14
有没有什么工具,能根据需求进行数据库设计文档生成的
以下是为您提供的相关信息: COZE 工作流中关于数据库节点的教程: 1. 在 SQL 输入中添加 SQL 代码,如果不会写 SQL 语言或不懂代码,可以借助 AI 帮助。例如将相关需求发送给豆包,如学习特定文档并根据具体需求撰写用于工作流的 SQL 语句。 2. 向豆包提出具体要求,如指定数据库表名称(如“user_question_answer”)和存储字段名称(“create_time”“answer”“question”),并说明数据写入的需求。 3. 豆包会回复生成的 SQL 语句(如“INSERT INTO user_question_answer”),将其复制到数据库节点里 SQL 的位置。 4. 试运行时提供输入内容并选择第一步使用的 bot,成功后发布工作流即可记录对应数据到数据库。 另外,欧盟数据法案英文版.pdf 中提到:成员国主管当局应确保对违反本法规规定义务的行为处以处罚。在这样做时,应考虑到所涉公共利益、违规行为的性质、严重程度、复发和持续时间、所开展活动的范围和种类以及违规者的经济能力。委员会应在必要时考虑特定部门的条件和自愿数据共享机制的现有做法,为企业间数据共享合同制定和推荐非强制性示范合同条款。这些示范合同条款应主要是帮助特别是小企业签订合同的实用工具。当广泛和完整地使用时,这些示范合同条款也应具有有益的效果,影响关于访问和使用数据的合同设计,从而在访问和共享数据时更广泛地导致更公平的合同关系。为消除通过联网产品和相关服务的物理组件(如传感器)获得或生成的数据库中的数据持有者声称根据第 96/9/EC 号指令第 7 条享有的特殊权利(如果此类数据库不符合特殊权利的条件)从而阻碍用户根据本法规有效行使访问和使用数据以及与第三方共享数据的权利的风险,本法规应明确该特殊权利不适用于此类数据库,因为保护要求未得到满足。
2025-03-06
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
ai在执行的过程中将提示词也返回了如何解决?
如果在 AI 执行过程中提示词被返回,可以按照以下步骤解决: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。 2. 若想为 AI 赋予新的提示词,可返回“目录 4 里的第 17 步”,其中的中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录即可。 在设置提示词时,还需遵循最简化原则: 1. 不需要包含作者信息,像是作者、版本这类不相关信息,无需告知大模型。 2. 注意分类正确,避免将输出错误分类到目标中,例如“提供改进建议,以及改进原因”和“对用户的 Prompt 进行评分 1 至 10 分,10 分为满分”这类相似但不同的目标,容易造成困惑。更佳做法是放到达成目标后的输出模块。 3. 注意拼写正确,例如“Constraints”,确保限制条件清晰且可被大模型执行。 另外,在动手做一个 AIAgent Flow 中,第四步对分类器进行内容编排,将指令分为扩写、缩写、总结等四类,设定最终分类条件。为分类器设置好内容后,为每个指令编写具体内容,引入变量,处理各分支结果并进行最终输出。整个测试流程需先准备文本素材,再逐一进行各项测试,包括扩写、缩写、总结和错误处理测试。
2024-12-18
ai落地场景:输入敏感词管控,脱敏怎么返回处理
很抱歉,目前知识库中没有关于输入敏感词管控及脱敏返回处理的相关内容。但一般来说,对于输入敏感词的管控和脱敏处理,常见的方法包括: 1. 建立敏感词库:事先整理出常见的敏感词列表。 2. 文本检测:在输入时对文本进行实时检测,判断是否包含敏感词。 3. 脱敏处理方式:可以采用替换、隐藏部分字符、加密等方法对敏感词进行处理。 4. 设置规则和策略:例如根据不同的场景和用户级别,确定不同的处理方式。 由于缺乏具体的详细信息和场景,以上只是一些常见的思路和方法,您可以根据实际情况进一步深入研究和设计具体的解决方案。
2024-09-10