Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

FLUX低显存怎么安装

Answer

如果您的显存较低,安装 FLUX 可以参考以下步骤:

  1. NF4 模型下载:
    • 链接:https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors
    • 放置位置:ComfyUI/models/checkpoint/中(不像其他 Flux 模型那样放置在 UNET 中)
    • NF4 配套节点插件:git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git
  2. GGUF 模型下载:
    • 链接:Flux GGUF 模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/main
    • GGUF 配套节点插件:GGUF 节点包:https://github.com/city96/ComfyUI-GGUF
    • 值得一提的是在最新版本的 ComfyUI 中,GGUF 的节点插件可以在 Manager 管理器中搜到下载安装,NF4 的配套节点插件则搜不到。
  3. 对于 8G 以下显存的方案:
    • flux1-dev-bnb-nf4.safetensors 放入 ComfyUI\models\checkpoints 文件夹内。
    • ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
    • 注:如果报错,请更新 BitsandBytes 库。下载放入解压后 ComfyUI\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。

相关资源链接:

  • BitsandBytes Guidelines and Flux:https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981
  • ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
  • flux1-dev-bnb-nf4.safetensors:https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors

注意使用精度优化的低配模型的话,工作流和原版是不一样的。自己改的话就是把上面官方的这个 fp8 的工作流,只需把底模的节点换成 NF4 的或者 GUFF 的即可。相关生态发展很快,有 Lora、Controlnet、IP-adpter 相关生态建设非常速度,以及字节最近发布的 Flux Hyper lora 是为了 8 步快速生图。

Content generated by AI large model, please carefully verify (powered by aily)

References

工具教程:Flux

开源社区迅速展开了对低配置方案的优化,NF4来自我们controlnet的作者,GGUF则包含多个版本可以使用[heading4]NF4模型下载[content]https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors放置在ComfyUI/models/checkpoint/中(不像其他Flux模型那样放置在UNET中)NF4配套节点插件git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git[heading4]GGUF模型下载[content]Flux GGUF模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/mainGGUF配套节点插件GGUF节点包:https://github.com/city96/ComfyUI-GGUF以下是使用GGUF生图:值得一提的是在最新版本的comfyUI中GGUF的节点插件是可以在Manager管理器中搜到下载安装的,NF4的配套节点插件则搜不到。注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。[workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/NUMabE5CcoxYVTxoSQAcpCslnWd?allow_redirect=1)自己改的话就是把上面官方的这个fp8的工作流,只需把底模的节点换成NF4的或者GUFF的即可。相关生态发展很快,有Lora、Controlnet、IP-adpter相关生态建设非常速度,以及字节最近发布的Flux Hyper lora是为了8步快速生图。下节我们先讲讲Flux的lora训练。

工具教程:Flux

开源社区迅速展开了对低配置方案的优化,NF4来自我们controlnet的作者,GGUF则包含多个版本可以使用[heading4]NF4模型下载[content]https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors放置在ComfyUI/models/checkpoint/中(不像其他Flux模型那样放置在UNET中)NF4配套节点插件git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git[heading4]GGUF模型下载[content]Flux GGUF模型:https://huggingface.co/city96/FLUX.1-dev-gguf/tree/mainGGUF配套节点插件GGUF节点包:https://github.com/city96/ComfyUI-GGUF以下是使用GGUF生图:值得一提的是在最新版本的comfyUI中GGUF的节点插件是可以在Manager管理器中搜到下载安装的,NF4的配套节点插件则搜不到。注意使用精度优化的低配模型的话,工作流和原版是不一样的。此处没有专门列举。[workflow.json](https://bytedance.feishu.cn/space/api/box/stream/download/all/NUMabE5CcoxYVTxoSQAcpCslnWd?allow_redirect=1)自己改的话就是把上面官方的这个fp8的工作流,只需把底模的节点换成NF4的或者GUFF的即可。相关生态发展很快,有Lora、Controlnet、IP-adpter相关生态建设非常速度,以及字节最近发布的Flux Hyper lora是为了8步快速生图。下节我们先讲讲Flux的lora训练。

第十五期 生图新王FLUX.1

flux1-dev-bnb-nf4.safetensors放入ComfyUI\models\checkpoints文件夹内https://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensorsComfyUI_c_NF4节点https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4注:如果报错,请更新BitsandBytes库下载放入解压后ComfyUI\custom_node文件夹内重启ComfyUI,如果之前没更新,更新后再重启。[heading3]在ComfyUI里的使用[heading3]相关资源链接[content]BitsandBytes Guidelines and Fluxhttps://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/981ComfyUI_bitsandbytes_NF4节点https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4flux1-dev-bnb-nf4.safetensorshttps://huggingface.co/lllyasviel/flux1-dev-bnb-nf4/blob/main/flux1-dev-bnb-nf4.safetensors

Others are asking
SD曝显存
在使用 SD 进行超大尺寸绘制时,直接调分辨率绘制超高分辨率的图片(如 10000x768 的清明上河图)通常会爆显存。正常尺寸设置最高到 2048,无法直接设置 10000 的宽度。解决方法是先在 PS 中设置所需尺寸的画布并保存为 jpg 图片,然后将图片放入 ControlNet 中,点击右下角箭头将尺寸信息发送到生成设置,填入正反向提示词,并启用 Tiled Diffusion 插件(方案选择 Mixture of Diffusers)防止接缝产生。 在 ComfyUI 中,模型的安装部署方面,FLUX 模型建议选择 dev 版本,显卡可以的用 fp16,显卡不够用的选 fp8,模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,“UNET 加载器”节点中的 weight_dtype 可设置为 fp8 降低显存使用量,但可能稍降质量。clip 模型(t5xxl_fp16.safetensors 和 clip_l.safetensors)放在 ComfyUI/models/clip/文件夹,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率。Vae 模型下载后放入 ComfyUI/models/vae 文件夹。 在生成过程中,ComfyUI 处理 SDXL 模型比 webUI 更有效率。例如,ComfyUI 生成过程中显存占用率为 7 9GB,每次生成耗时 13 15s;webUI 显存占用率为 8 11GB,每次生成耗时 25s。此外,还可对 SDXL 进行风格控制,添加【新建节点】【实用工具】【SDXL Promot Styler Advanced】节点,通过右键增加输入点将文本提示词赋予 base 和 refiner 并切换风格。
2025-02-02
低显存版怎么安装
对于低显存版的安装,以下是相关步骤: 1. FLUX.1 低显存方案(8G 以下): 将 flux1devbnbnf4.safetensors 放入 ComfyUI\models\checkpoints 文件夹内。 下载 ComfyUI_c_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 ,放入解压后 ComfyUI\custom_node 文件夹内。 注:如果报错,请更新 BitsandBytes 库,下载放入解压后 ComfyUI\custom_node 文件夹内,重启 ComfyUI,如果之前没更新,更新后再重启。 2. Dreambooth Extension for StableDiffusionWebUI: 在 SD Web UI 中转到“Extensions(扩展)”选项卡,选择“Available(可用)”子选项卡,选择“Load from:(从...加载)”以加载扩展列表,最后在 Dreambooth 条目旁边点击“install(安装)”。 安装完成后,必须完全重新启动 StableDiffusion WebUI。重新加载 UI 将无法安装所需的依赖项。 还需要更新版本的 diffusers,因为 SDWebUI 使用的是 0.3.0 版本,而 DB 训练需要>=0.10.0 版本。没有正确的 diffusers 版本会导致“UNet2DConditionModel”对象没有属性“enable_gradient_checkpointing”的错误消息,以及安全检查器警告。
2025-01-09
comy UI FLUX 低显存
ComfyUI FLUX 低显存运行的相关内容如下: 工作流: 目的是让 FLUX 模型能在较低的显存情况下运行。 分阶段处理思路: 先使用 Flux 模型在较低分辨率下进行初始生成以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用。 使用 SD 放大提升图片质量。 工作流的流程: 初始图像生成(Flux): UNETLoader:加载 flux1dev.sft 模型。 DualCLIPLoader:加载 t5xxl 和 clip_l 模型。 VAELoader:加载 fluxae.sft。 CLIPTextEncode:处理输入提示词。 BasicGuider 和 RandomNoise:生成初始噪声和引导。 SamplerCustomAdvanced:使用 Flux 模型生成初始图像。 VAEDecode:解码生成的潜在图像。 初始图像预览:PreviewImage 显示 Flux 生成的初始图像。 图像放大和细化(SDXL): CheckpointLoaderSimple:加载 SDXL 模型(fenrisxl_SDXLLightning.safetensors)。 UpscaleModelLoader:加载 RealESRGAN_x4.pth 用于放大。 VAELoader:加载 sdxl_vae.safetensors。 ImageSharpen:对初始图像进行锐化处理。 UltimateSDUpscale:使用 SDXL 模型和放大模型进行最终的放大和细化。 最终图像预览:PreviewImage 显示最终放大和细化后的图像。 FLUX 模型的选择: 用半精度 fp8 dev 版本(能用单精度 dev 版本的尽量用),也适合 fp8 的 T8 模型,降低对内存的占用。 记得把 weight dtype 也设置为 fp8,降低对显存的使用。 建议:先关闭高清放大部分,等跑出来效果满意的图片后,再开启放大。 ComfyUI 简介: 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更加精准的工作流定制和完善的可复现性。 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候能清晰发现错误出在哪一步。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI
2025-01-08
在comyui中,使用flux1-dev模型24g显存够吗
在 ComfyUI 中使用 Flux1dev 模型,24G 显存是可以的,但建议内存尽量高于 32G 以避免意外情况的发生。如果您的显卡是 24G 或更高,右键 24G 那个 train_flux_24GLora 的文件。修改脚本路径和参数时,要注意底模路径、VAE 路径、数据集路径,还有下面的 clip 路径和 T5xxl 路径的正确填写。ae.safetensors 和 flux1dev.safetensors 的下载地址为:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ,百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。最后下载 dev 的工作流: ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,打开 ComfyUI 把工作流或图片拖拽到其中即可。
2024-11-12
在comyui中,使用flux1-dev模型需要多少显存
在 ComfyUI 中使用 flux1dev 模型所需的显存情况如下: 相关模型的下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址为:https://huggingface.co/Kijai/fluxfp8/tree/main 。 低显存方案(8G 以下):flux1devbnbnf4.safetensors ,放入 ComfyUI\\models\\checkpoints 文件夹内,下载链接为 https://huggingface.co/lllyasviel/flux1devbnbnf4/blob/main/flux1devbnbnf4.safetensors 。 此外,还提供了以下相关资源链接: BitsandBytes Guidelines and Flux :https://github.com/lllyasviel/stablediffusionwebuiforge/discussions/981 ComfyUI_bitsandbytes_NF4 节点:https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4
2024-11-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置随意,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程,完成后提示是否下载 hunyuan 模型,选择 n 不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,选择上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入。 5. 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数。若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 6. 按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择 Lora 和调节参数。
2025-03-15
flux ae.sft放在哪个文件夹
在 ComfyUI 中,flux ae.sft 应放在 ComfyUI/models/vae/ 文件夹下。 Flux 模型在 ComfyUI 中的使用,需要将相关模型放在对应的目录下。具体来说,t5xxl_fp16.safetensors 放在 ComfyUI/models/clip/ 目录下,clip_l.safetensors 放在 ComfyUI/models/clip/ 目录下,ae.safetensors 放在 ComfyUI/models/vae/ 目录下,flux1dev.safetensors 放在 ComfyUI/models/unet/ 目录下。flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-07
ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUI-aki(1)\ComfyUI-aki-v1.6\ComfyUI\models\checkpoints\flux1-dev-fp8.safetensors
很抱歉,根据您提供的错误信息“ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUIaki\ComfyUIakiv1.6\ComfyUI\models\checkpoints\flux1devfp8.safetensors”,暂时无法明确具体的问题原因。可能是模型文件格式不被识别,或者文件路径存在错误等。建议您检查文件的完整性和正确性,确保其符合相关软件的要求。
2025-03-07
midjourney_whisper_flux_lora_v01
以下是关于您提到的“midjourney_whisper_flux_lora_v01”的相关信息: 1. XLabsAI 发布了 6 个不同的 Lora,包括 Midjourney 风格、写实风格、动漫风格、迪斯尼风格、风景风格等,并提供了相应示例。 2. 文生图模型排序(从高到低):Imagen 3 真实感满分,指令遵从强;Recraft 真实感强,风格泛化很好,指令遵从较好(会受风格影响);Midjourney 风格化强,艺术感在线,但会失真,指令遵从较差;快手可图 影视场景能用,风格化较差;Flux.1.1 真实感强,需要搭配 Lora 使用;文生图大模型 V2.1L(美感版) 影视感强,但会有点油腻,细节不够,容易糊脸;Luma 影视感强,但风格单一,糊;美图奇想 5.0 AI 油腻感重;腾讯混元 AI 油腻感重,影视感弱,空间结构不准;SD 3.5 Large 崩。 3. 指定 AI 生图里的文字,有 9 种解决方案,其中 2 种快过时了。包括 Midjourney(v6 版本开始支持文字效果,主要支持英文,中文支持有限)、Ideogram(以图片嵌入文字能力闻名,2.0 模型能力得到进一步加强,支持复杂文本和多种艺术风格,文字与图像能够自然融合,支持英文,中文提示词可自动翻译为英文)、Recraft(V3 开始支持文本渲染能力,是目前唯一能在图像中生成长文本的模型,支持精确的文本位置控制,支持图像编辑功能,支持矢量图生成,支持英文,中文渲染能力较弱)、Flux(FLUX.1 是一款高质量的开源图像生成模型,支持复杂指令,支持文本渲染,支持图像编辑,生成图像的质量很高,主要支持英文)。
2025-03-07
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
trae如何安装
以下是 Trae 的安装步骤: 1. 由于 Trae AI 官网部署在海外,且其本身需要使用海外的大模型,所以需要通过 VPN 等方式科学上网。 2. 在官网(https://www.trae.ai/download)直接点击下载,Trae 会自动识别您的电脑芯片。 3. 下载完成后,如果是 Mac 系统,将左侧的 Trae 应用拖动到右侧的文件夹内;如果是 Windows 系统,双击 Trae 图标,即可完成安装。 4. 安装完成后,点击图标启动,进行以下简单设置: 选择主题背景和默认语言,可选择中文。 对于提供的 Cursor、VS Code 等其他 AI 编程工具的配置和插件迁移,如果是第一次使用类似工具,可直接点“Skip”选项。 对于不理解意思的设置,直接点“Skip”选项。 5. 选择合适的登录方式,登录方式包括 Google 账号登录、Github 账号登录、邮箱登录。如果没有账号,可新注册一个账号。推荐有余力的用户访问 Github 官网(https://github.com/)注册。 注意:Trae 仅在部分地区可用,可能需要开启科学上网。登录完之后,若出现“App Unavailable”提示,可能是所在地区不可用,此时需要开启科学上网。网页登录成功之后可以把科学上网关掉。
2025-04-08
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27