Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

查看deepseek v3 技术报告

Answer

以下是关于 DeepSeek V3 的相关信息:

  • Andrej Kaparthy 赞扬 Deepseek 的技术报告值得一读。
  • 很多中国人将 DeepSeek-V3 视作“国货之光”,它对高性能算力的依赖小,将训练和推理当作一个系统,给出诸多新的技术思路,注重用工程思维高效解决算法和技术问题。
  • DeepSeek 的创始人梁文锋出生于 1980 年代,来自广东省的一个五线城市,毕业于浙江大学,主修软件工程,本硕,人工智能方向,非常低调。
  • 阅读 DeepSeek V3 的技术报告列出的研发人员名单近 200 人,均为本土 CS,很多核心是清北及大学应届的 CS 硕博,即便核心人员也是毕业 3 - 5 年 CS 博士,研发人员充分信任不断自我选择,这是中国最像 OpenAI 研发组织分工和氛围的 AI 研究机构。
  • 您可以通过以下链接获取相关技术报告:
Content generated by AI large model, please carefully verify (powered by aily)

References

DeepSeek 的秘方是硅谷味儿的

Andrej Kaparthy赞扬Deepseek的技术报告值得一读很多中国人将DeepSeek-V3视作“国货之光”,也是中国式创新的一个范式。确实,中国聪明的研究人员和工程师非常擅长“多快好省”干大事,在资源紧缺有限的情况下(很多时候我们也不想),通过技术方法的创新和精进,实现超预期的成果。DeepSeek-V3对高性能算力的依赖如此之小,将训练和推理当作一个系统,给出了诸多新的技术思路,注重用工程思维高效解决算法和技术问题,集中力量办大事,这确实是中国公司、中国团队和中国研究人员更擅长的。Alexandr Wang从DeepSeek总结的经验是:美国人在休息,中国人在奋斗,以更低的成本、更快的速度和更强大的战斗力追赶。很有意思,美国科技界对中国比较友善的人士——其中包括马斯克——经常总结中国在一些领域的成功经验是聪明、勤奋和有方法,这当然没什么问题。但它解释不了,至少在AI领域解释不了的一个问题是:中国的其它大模型公司和AI人才同样聪明、勤奋和擅长方法创新,他们的很多技术方法创新也卓有成就(DeepSeek的分布式推理,我第一次注意到类似的创新是月之暗面的Mooncake),但为什么没有引发如此轰动的世界级效应?当然今后他们可能也会,但至少,为什么这次是DeepSeek?

详解:DeepSeek深度推理+联网搜索 目前断档第一

简介:梁文锋出生于1980年代,广东省的一个五线城市(小镇学霸)。他的父亲是一名小学老师。梁文锋的家庭情况较为低调,公开资料中未提及其婚姻与家庭情况。梁文锋毕业于浙江大学,主修软件工程,本硕,人工智能方向。他在大学期间表现出色,展现了对计算机科学和数学的浓厚兴趣。梁文锋非常低调,几乎看不到媒体对他的采访,网上难以发现他的照片。本文编写时找到两篇记者采访,能否了解梁文峰的从量化到AI的背景及动因和抱负,包括创办深度求索储备的数万块GPU,以及如何组织AI本土研究人员。阅读DeepSeek V3的技术报告列出的研发人员名单近200人,均为本土CS,很多核心是清北及大学应届的CS硕博,即便核心人员也是毕业3-5年CS博士,研发人员充分信任不断自我选择,这是中国最像OpenAI研发组织分工和氛围的AI研究机构。本文引用了两篇记者采访,以及梁文峰自己为量化之父西蒙斯自传中文版本写的前序

详解:DeepSeek深度推理+联网搜索 目前断档第一

来自宝玉:https://mp.weixin.qq.com/s/vAp2w-I5ozTw-7R6jreLMw[heading2]获取系统提示词的提示词[heading4]获取后系统提示词如下[heading4]获取后系统提示词(2)如下[heading4]英文系统提示词[heading1]R1和V3技术报告:[content][技术报告解读](https://waytoagi.feishu.cn/wiki/ZXnkwKXr8ipW2YkgFTKcxlXpnHc)[DeepSeek_R1.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/S1iVbV8m4oKWMexQPJbcpcInnHf?allow_redirect=1)[DeepSeek_V3.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/GuktbBuGto8oOCx0kRJcVy4RnNg?allow_redirect=1)

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
deepseek v3微调
以下是关于 Deepseek V3 微调的相关信息: 云舒文章总结卡 2.0 提示词全面支持 Deepseek V3,效果媲美 Claude3.7。V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。横版为 1080 x 800 卡片提示词,竖版为 750 x 不限高卡片提示词。 各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 关于智能纪要,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面。 北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调,DeepSeekV3 降至原价的 50%。
2025-04-12
配置“DeepSeek-R1”模型的 API key:基础 URL:https://ark.cn-beijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。添加“DeepSeek-R1”模型。这个行为在Macbook中怎么操作,请进行指导,通过图片、文字、数据、网址等形式
在 Macbook 中配置“DeepSeekR1”模型的 API key 及添加模型的操作步骤如下: 1. 获取 DeepSeekR1 满血版密钥: 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ 。 创建一个接入点,点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 确认无误后,点击“确认接入”按钮。 自动返回创建页面,复制多出的接入点名称“DeepSeekR1”。 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】,若没有则点击【创建 API key】,复制并保存。 2. 配置“DeepSeekR1”模型的 API key: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置 API key:基础 URL:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 3. 环境配置指南: 首先到 deepseek 的官网(https://www.deepseek.com/),进入右上角的 API 开放平台。若没有赠送余额,可选择充值,支持美元和人民币两种结算方式及各种个性化充值方式,并创建一个 API key(注意及时保存,只会出现一次)。 以 cursor 作为代码编辑器为例,下载安装后,在插件页面搜索并安装 Roocline 。安装完后,打开三角箭头,选中 RooCline 并点击齿轮,进入设置,依次设置: API Provider:选择 DeepSeek 。 API Key:填入已创建的 key 。 模型:选择 DeepSeekreasoner 。 语言偏好设置。 记得把 HighRisk 选项都打开,最后点击 Done 保存修改。 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-26
DeepSeek的V3版本适合那些配置的电脑使用
DeepSeek 的 V3 版本在以下云计算厂商中的使用情况如下: 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费,包括 DeepSeekV3。即日至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:未提及 DeepSeekV3 版本的相关配置和使用情况。 Gitee AI:未提及 DeepSeekV3 版本的相关配置和使用情况。 需要注意的是,不同云计算厂商的配置和价格可能会有所变化,建议您在实际使用时进一步了解和确认。
2025-02-22
配置“DeepSeek-R1”模型的 API key:基础 URL 为 https://ark.cn-beijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。请对于这一步进行细节说明
以下是配置“DeepSeekR1”模型的 API key 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台)。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为“DeepSeekR1”。如果出现“该模型未开通,开通后可创建推理接入点”的提示,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。如果无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”,复制这个推理点的 ID 放到微信里保存。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。如果已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】,复制好之后,放到微信里保存。 7. 也可以使用其他插件,下面为举例示意使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 8. 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 9. 基础 URL 填写:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 10. 配置完成。
2025-02-15
deepseek V3
DeepSeek 是基于 AI 模型的产品,DeepSeek V3 是其品牌下的具体模型之一(类 GPT4o)。DeepSeek 不是“中国式创新”的产物,它是中国杭州的人工智能创业公司,其在 2024 年 12 月发布的大语言模型 DeepSeekV3 引发了震撼,多项评测成绩优秀,以相对较低的成本和硬件实现了出色的成果,收获了广泛的赞誉,尤其是在开源社区。同时,DeepSeek 应该为全人类的人工智能事业做出更大贡献,且已成为中国最全球化的 AI 公司之一,其成功的秘方具有硅谷风格。
2025-02-06
deepseek v3
DeepSeek V3 相关信息如下: 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但有趣的事还在后头,DeepSeek 应会为全人类的人工智能事业做更大贡献,其秘方是硅谷味儿的。 作为中国杭州的人工智能创业公司,DeepSeek 在 2024 年 12 月发布的大语言模型 DeepSeekV3 实现了诸多不可能,以 550 万美元和 2000 块英伟达 H800 GPU 训练出的开源模型,多项评测成绩超越了 Qwen2.572B 和 Llama3.1405B 等顶级开源模型,与 GPT4o 和 Claude 3.5Sonnet 等世界顶级闭源模型不相上下。尽管 OpenAI CEO Sam Altman 发疑似影射其抄袭的推文,但 DeepSeek 收获广泛真诚赞誉,尤其在开源社区。 12 月 27 日发布预览版,参数量 685B,磁盘占用 687.9GB,架构为混合专家模型(MoE),256 个专家,每个 token 使用 8 个专家,竞争对手为 Meta AI 的 Llama 3.1(405B 参数)。亮点包括准确理解复杂和细微查询、知识更新至 2023 年、多语言支持和个性化服务增强、数据安全和隐私保护加强,在 BigCodeBenchHard 排名第一。Aider Polyglot 排行榜预览得分 48.4%,排名第二。相关链接包括详细信息:https://x.com/imxiaohu/status/1872182632584561056 ,模型下载:https://huggingface.co/deepseekai/DeepSeekV3Base/tree/main ,在线体验:https://chat.deepseek.com/sign_in 。 Google 外包人员通过多项指标对 Gemini 和 Claude 进行输出对比,Claude 安全策略最严格,拒绝不安全提示,Gemini 部分回答被标记为“严重安全违规”。
2025-01-20
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
可以查看GPTs是怎么设置的吗
以下是关于 GPTs 设置的详细步骤: 1. 放入完整的 Schema,并点击 Format 进行验证,如果不报错并显示出 Available Action 的列表,则代表成功。 2. 进行授权,输入 ClientID YOUR_ACCESS_KEY,如 ClientID 123456,并点击 Save。 3. 点击对应 Action 的 Test 验证 Action 是否可以调用。如果遇到返回数据过多造成异常的情况,也代表成功,只需在提示词中限定接口返回的数量即可。 4. 为了 GPTs 后期发布和分享,需要配置 Privacy Policy,其位置一般在网站的底部或者菜单的底部。复制 Privacy Policy 网页地址,如 Privacy policy 地址为:https://unsplash.com/privacy 。 5. 完善 GPTs 的基本配置。 6. 提示词调用方面,根据图片中各个对应关系,执行的操作需要指定 action 的名称,需要显示的字段名称指定具体的位置,比如图片作者,则使用 user.name,这样更加精确,不容易出错。完整提示词如下。注意,如果遇到图片目前无法直接显示,可以使用下载链接的方式查看,如下为应对方案的提示词和效果。如果有更好的方案,欢迎提供。 实操配置 Gapier Actions API 的步骤如下: 1. 登录地址:,点击 Copy Link 进行复制 Actions API 链接。 2. 打开 ChatGPT,点击创建 GPTs>Configure>Create new action。了解平台上支持的功能,输入来自 Gapier 的 Actions API 并点击 Import,导入成功。 3. 在 Gapier 复制授权码用于授权。在 Authentication 下选择配置图标,进入授权页面。开始配置授权码: Authentication Type:选择 API Key Auth Type:选择 Basic 输入从网站上复制的授权码,并点击 Save。若需要分享给他人或者公开发布,需要配置隐私策略码,在网页上寻找并复制,回到 GPT 上进行配置。 4. 确定调用的 Action,并在 Prompt 中引用。查看 Action 的方式分为两种,方式一:GPTs>Configure>Actions 页面;方式二:网页查看,地址为。回到 GPT>Configure 页面,引用 Action,比如调用思维导图的 API,直接输入调用 GenerateMindMap API 即可。此外,另外一种引用的方式是:只要在 Instructions 中申明清楚需求,GPT 会自动选择合适的 API。保存后试用。 创建一个 Http 服务让 GPTs 调用的步骤如下: 1. 创建一个每次产生一个随机数的 Http 服务,体验地址如下:https://gptaction.iaiuse.com/api/random 。 2. 直接在 Instructions 里面写,让它去调用接口。窗口最下面有个 Actions,这里就可以设置它和外部系统的接口。 3. 打孔 Add actions 界面,录入相关代码在 Schema 里面。点击下面的 Test 按钮,就能看到 ChatGPT 如何和服务进行交互。第一次允许它会提示是否允许外部服务,点击右边的小三角可以看到对话框,最右边那个隐私政策就是前面设置的。针对每个 action 都可以设置独立的隐私政策。通过这样一个简单的示例,了解 GPTs 如何和外部的服务进行交互,扩展它的能力。
2025-02-09
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何查看文章是否是ai生成的?
以下是一些常用的查看文章是否为 AI 生成的方法和工具: 1. Turnitin:这是一个广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。使用时,用户上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统会提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 6. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 7. GPTZero:专门设计用于检测由 GPT3 生成内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,在内容创作、广告、媒体等领域广泛应用,包括文字、图像、视频生成等。AIGC、UGC(用户生成内容)和 PGC(专业生成内容)是内容生成的不同方式,主要区别在于内容的创作者和生成方式。UGC 由用户生成,内容丰富多样,适用于社交媒体等平台;PGC 由专业人士或机构生成,内容质量高、专业性强,适用于新闻媒体等平台;AIGC 由人工智能生成,可快速大规模生成内容,适用于自动化新闻等场景。
2025-01-19
大模型排名怎么查看
要查看大模型排名,您可以通过以下几种方式: 1. 查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,这些渠道通常会及时发布最新的排名和评价。 2. 在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。 3. 例如,您可以访问聊天机器人竞技场网站,输入一些问题,根据两个模型的响应选择获胜者,通过这种方式根据胜率计算 ELO 分数来确定排名。越高越好。目前表现最好的模型多为专有模型,如 OpenAI 的 GPT 系列,以及 Anthropic 的 Claude 系列等。 4. 斯坦福发布的大模型排行榜 AlpacaEval 也可作为参考,其支持两种模式的模型评估方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。评测过程分为以下 3 步: 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-01-14
研究报告提示词
以下是关于研究报告提示词的相关内容: 首先要确定整个调研报告的大纲目录,可以利用老师提供的示例报告截图并用手机识别。然后确定整体的语言风格和特色,调研报告的语言风格通常是“逻辑清晰,层层递进,条理分明”,可将范文交给 Claude 2 总结语言风格。但要注意,生成文章时不要过于限制 GPT4,否则效果不佳。 接着让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一部分,否则重新生成。生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息。这部分难度较大,可能导致半天才能搞定一条提示词,甚至迭代 1 天半,过程中可能会遇到 workflow 失效、插件选择和使用等问题。 好在通过向星球和群聊中的大佬求助,获得了建议和思路。比如在需要搜索网络信息的章节处打上标签,让 GPT4 看到标签后自主搜索信息再来生成内容,没打上标签的直接输出,这种方法可行。最后,按顺序完成 prompt 的其他部分。 最新版本的 prompt 经过以上操作得以完成,之前用前几版 prompt 已帮团队和同学完成 3 篇调研报告,但效果不及最新版。建议平时可利用 GPT4 降本增效,尝试编写提示词。
2025-04-15
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
2025年AI研究报告
以下是为您提供的 2025 年 AI 研究报告相关信息: Gartner:《生成式 AI 时代下科技产品的重要发展机遇》(2024/10/16) 强调了生成式 AI 技术对对话式 AI 和科技产品创新的显著影响。 预计到 2025 年,生成式 AI 将嵌入 80%的对话式 AI 产品中,推动市场营收大幅增长。 建议技术供应商积极把握机遇,通过理解市场动态、技术成熟度和市场接受度来调整策略。 生成式 AI 的四大关键能力—对话式 AI、AI 代理、合成数据和个性化—能够提升产品价值和客户体验。 提出了将生成式 AI 功能添加到产品中的四个关键步骤,并强调了独立软件供应商在企业应用中嵌入生成式 AI 能力的趋势。 如需下载研究报告,。 甲子光年:2025 DeepSeek 开启 AI 算法变革元年(2025/02/05) DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构,显著提升了算力利用效率,打破了算力至上的传统认知。 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能。 报告强调 2025 年是算法变革的元年,DeepSeek 的推理模型开启了算法变革,其训练过程聚焦于强化学习,提升了模型的推理能力。 非 Transformer 架构的算法模型成为新的发展方向,如 LFM 架构模型性能超越同等规模的 Transformer 模型。 如需下载研究报告,。 安永:数据+AI 开启经验规模化复制时代(2023/12/19) 人工智能正在经历新的发展浪潮。 某头部公司正在转向 AI Agents 支持平台,结合第 4 代人工智能模型与专业语料库以实现业务创新。 AI Agents 有望为商业领域注入新活力,展示人工智能的潜力和商业价值。 随着平台的发展,新的 AI Agents 涌现,提供专业化、高端化、个性化、规模化、持续化的服务。 人工智能的革新涵盖了生成内容(AIGC)和生成服务(AIGS)的领域。 保险行业面临挑战,AI 的突破为其带来新的应对方向。 知识星球下载: 弘则研究:2023 生成式 AI 驱动向量数据库加速发展(2023/12/18) 向量数据库潜在市场空间是传统结构化关系型数据库的数倍达到千亿美元。 据信通院统计数据,全球数据库市场规模在 2020 年为 671 亿美元,到 2025 年有望达到 798 亿美元,CAGR 3.5%估算关系型数据库全球龙头 Oracle 收入规模小几百亿美元。 仅考虑现有非结构化数据的向量化处理,估算需要的存储空间增量为之前的数倍。 未来随着生成式 AI 应用增量数据的爆发对于向量数据库的需求会更大。 报告下载地址:
2025-04-09
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31