Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

为什么扣子工作流里面大模型很慢

Answer

扣子工作流中大模型运行慢可能有以下原因:

  1. 模型加载部分:需从官网GitHub-cubiq/ComfyUI_InstantID下载两个文件,并正确配置,如在 models 下创建 grounding-dino 且配置齐全相关文件。对于 grounding-dino 和 sams 配置是否齐全可使用“抠头发.json”检验。
  2. 科学上网问题:运行到此节点时可能会报科学上网的错误,需稳定科学上网后重启 UI 跑工作流。
  3. 提示词设置:在大模型节点中,系统级提示词的设置很关键,它与外层用户直接交互的提示词不同,用于定义模型的角色和任务。
  4. 批处理设置:包括迭代处理、循环次数和并发量的设置,通过调整这些参数可提高处理效率。

若觉得排除 bug 很慢,可使用https://www.cnblogs.com/qcy-blog/p/18222657的工作流进行操作。

Content generated by AI large model, please carefully verify (powered by aily)

References

4-SeasonYou 工作流 副本

官网[GitHub-cubiq/ComfyUI_InstantID](https://github.com/cubiq/ComfyUI_InstantID?tab=readme-ov-file)下载两个文件:先点击如图中的左上角部分将加载器展开且选择官网下载好的两个模型:否则将会有以下的问题:⑩G-Dino加载器部分:在链接:[https://github.com/storyicon/comfyui_segment_anything](https://github.com/storyicon/comfyui_segment_anything)处下载以下文件:然后再次检查自己的文件有没有齐全:在models下创建grounding-dino且配置以下文件命名齐全。、同理,sams也是。对于grounding-dino和sams配置有没有齐全可以使用“抠头发.json”来检验然后,接下来很大概率在运行到此节点时会报科学上网的(httpsxxxxx)错误:倘若觉得在此工作流中排除bug很慢,不妨使用此网址的工作流(可以直接复制他的json内容自己创建一个txt文件后粘贴,再改后缀名为json。)进行操作:[https://www.cnblogs.com/qcy-blog/p/18222657](https://www.cnblogs.com/qcy-blog/p/18222657)那么你就要在尝试稳定的科学上网后重启UI跑工作流。便完成了。

蓝衣剑客:四万字长文带你通学扣子

在大模型节点中,设置系统级的提示词(system prompt)是一个关键步骤,这与外层用户直接交互的提示词不同。系统级提示词主要用于定义模型的角色和任务,提供一个固定的模板来指导模型的行为和输出。这种设置允许你明确地指示模型扮演的角色以及它需要完成的具体任务。例如,你可能需要模型作为一个历史顾问来回答有关过去事件的问题,或者作为一个技术专家来解决特定的技术问题。通过在系统级提示词中设定这些参数,你可以确保模型的输出与你的期望和工作流的需求保持一致。与外层提示词相比,系统级提示词更侧重于模型的内部工作机制,而外层提示词则更多地关注于如何根据用户的指令进行编排和响应。通过精心设计这两种提示词,可以增强模型对用户指令的处理能力,并确保整个工作流的顺畅和高效。在大模型组件中,批处理,也就是迭代处理,允许我们对集合或数组中的每个元素进行批量处理。这种处理方式通过依次遍历集合或数组,使得每个元素都能经过相同的处理流程。批处理的关键在于其能够通过有限循环实现高效的数据处理。批处理中,我们可以设置循环次数,也就是迭代的次数。例如,在Coze的大模型组件中,最多可以支持200次的循环,这相当于一个200次的for循环,允许我们对200个元素进行连续的处理。此外,批处理还涉及到并发量的问题。这里的并发量指的是在单次迭代中同时处理的元素数量。通过调整并发量,我们可以在一次循环中同时处理多个元素,从而提高处理效率。例如,如果集合中有200个元素,我们可以设置每次同时处理5个元素,这样只需要40次循环就可以完成整个集合的处理。

百炼相关Q&A

我在提示词中各种要求句尾不要有句号,可仍旧有。我甚至在工作流中用代码去掉后,回到应用中又给加上了标点符号。。。同样的提示词,放在扣子中就可以去掉标点符号。[heading1]Q:记得第一天提到,规定模型不能用搜索和投喂输出文本。比赛是不是只限在提示词调试的范围内呢?[heading1]Q:为什么同样的问题,给出的答案区别这么大?接的就是同一个应用,这个问题我很早就预测过了,同一个模型[heading1]Q:无论prompt怎么变,模型生成完内容后,自动被“不生成任何的标点符号”所替换。这个情况在max[content][IMG_7196.MOV](https://bytedance.feishu.cn/space/api/box/stream/download/all/Eapxb1wGfoHwPFxM8ZPchIWynOd?allow_redirect=1)[sd1722526042_2.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/MpeJbplT8oIqB0xfrB8cY6ixnml?allow_redirect=1)[heading1]Q:COW调用百炼应用如何支持多轮对话么?[heading1]Q:[heading1]Q:[heading1]Q:[heading1]Q:[heading1]Q:[heading1]Q:[heading1]Q:[heading1]Q:

Others are asking
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
扣子AI在中小学数学教学中可以怎么结合使用
扣子 AI 在中小学数学教学中的结合使用可以参考以下方面: 1. 自适应学习系统:例如使用像 Khan Academy 这样的平台,结合 AI 技术为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用像 Photomath 这样的工具,通过图像识别和数学推理技术为学生提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的应用,借助 AI 技术为学生解答数学问题、提供教学视频和答疑服务,帮助学生理解和掌握数学知识。 4. 交互式学习平台:参与像 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 此外,为小学数学课设计教育游戏时,可以考虑以下几个方面: 1. 游戏机制:选择适合小学生的游戏机制,如跳跃、追逐、搜寻等,增加游戏趣味性和参与度。 2. 游戏元素:选择数学相关的元素,如数字、运算符号、图形等,将它们融入游戏中,使学生通过游戏了解或巩固相应的数学知识。
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
扣子api的调用流程
扣子 API 的调用流程如下: 1. 传递请求的相关部分: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中通常不用于传递参数,因为 GET 方法的 URL 已包含必要参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列段落。在 GET 方法中可传递参数,但常编码为 URL 一部分。 Query:用于定义请求的查询部分,通常以“?”开头,后跟一系列键值对。在 GET 方法中是常用的参数传递方式。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中通常不用于传递参数,而是定义请求头部信息。 2. 配置输出参数: 如果填写无误,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 例如填入汉字“张”,点击自动解析。解析成功会显示成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 3. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,创建扣子的令牌步骤如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,选择过期时间(如永久有效),选择指定团队空间(个人空间或团队空间),勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 让 Coze 智能体机器人连上微信和微信群的配置: 1. 获取机器人 ID:在个人空间中找到要接入微信的机器人,如画小二智能小助手,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为机器人的 Bot ID。 2. API 授权:点击右上角发布,会出现 Bot as API,勾选并确定应用已成功授权 Bot as API。
2025-03-25
扣子工作流与用户界面搭建
以下是关于扣子工作流与用户界面搭建的相关内容: 一、工作流搭建 1. 进入扣子(coze.cn),选中「创建应用」,再选中「创建空白应用」,输入「应用名称」进入项目搭建页面。 2. 新增一个工作流,工作流名称叫做 psy_ai。 3. 该项目的业务逻辑是通过上传儿童的绘画作品分析心理状态,分析过程分为多个步骤实现,工作流的编排流程图为:上传作品>多个多模态大模型识别不同元素>分别提取特种并分析>综合分析结果>给出评估与建议。 4. 工作流从左到右分为三组大模型: 第一组多模态大模型主要作用是分析图片元素:整体特征、房屋特征、树木特征、人物特征。 第二组通用大模型主要是对提取到的信息进行对应内容的总结分析。 第三组通用大模型先汇总结果,然后再分别提取不同(诊断评估与建议)的结果。 5. 所有大模型节点对应的 prompt(提示词):文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc 二、用户界面搭建 1. 选择「桌面网页」类型。 2. 以《小喵星座日历》扣子网页应用为例: 板块 1:输入个人信息和生成图片,包含 2 个选项、1 个按钮、分割图、1 个输入框、1 个按钮。点击生成按钮会触发事件,调用日历生成工作流,生成中时生成按钮禁用,用 loading 按钮展示动态变化。 板块 2:生成星座日历图片,新建一个容器,包含一个文本组件、一个列表组件。 板块 3:查看星座生成记录,新建一个容器,包含一个按钮组件、一个列表组件,点击按钮调用读取生成历史的工作流,列表绑定生成历史工作流的输出结果。 板块 4:查看示例,新建一个容器,包含一个文本组件、4 个图片组件。 三、功能页相关配置 1. {{ImageUpload1.value}}用于获取图片上传组件的第一张图片。 2. {{psy_ai.error}}是工作流的报错信息。 3. 当用户上传图片点击按钮时会进入在家中的状态,右边内容显示容器里有两个组件: 图片组件显示加载中的 gif 图片(默认隐藏),图片来源本地上传加载中 gif 图,尺寸宽度为百分比 100%,高度适应内容,可见性根据{{!psy_ai.loading}}控制,工作流运行中显示。 Markdown 组件显示分析内容,隐藏根据{{psy_ai.loading}},工作流运行完显示。 至此,页面所有的布局和数据交互全部完成。
2025-03-25
智能运维欧洲生产访问很慢的原因是什么
很抱歉,目前知识库中没有关于智能运维欧洲生产访问很慢原因的相关内容。但一般来说,可能的原因包括网络延迟、服务器负载过高、数据传输瓶颈、硬件故障、软件配置不当等。您可以进一步检查网络连接状况、服务器的性能指标、数据传输通道以及相关软件的配置参数等方面来确定具体原因。
2025-02-19
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09
我想在飞书里面将一段话批量翻译成不同国家的语言 该 怎么做
目前飞书中可能没有直接将一段话批量翻译成不同国家语言的内置功能。但您可以借助一些第三方的翻译工具或软件来实现,比如谷歌翻译、百度翻译等。您将需要翻译的段落复制到这些工具中,然后选择您想要翻译的目标语言进行批量翻译。
2025-03-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
我要跟AI工作流有关的文章,只要飞书里边的,最好是飞行社和通往AGI之路里面的
以下是为您整合的与 AI 工作流相关的飞书内容: 根据 AI 使用的多少,人和 AI 协同的方式分为三种: 1. 嵌入式模式:工作仍由人主导,仅在部分步骤借助 AI 进行搜索或提供建议。 2. 协作模式:AI 完成部分完整步骤,如写文章时由 AI 完成初稿,人再调整,此模式基于目前 AI 发展程度最为常用。 3. 智能体模式:人设定目标并监督,整个工作流程由 AI 完成。 ChatGPT 给出了 AI 聊天机器人可完成的任务供参考,结合有效提示词,ChatGPT 能做的远超此列表,且 AI 工具不止 ChatGPT 一种。 个人常用任务对应的国内外 AI 产品可供了解尝试,需注意 AI 产品众多且更新变化快。 推荐网站“通往 AGI 之路”,该网站有大量 AI 相关的技术、产品、教程和案例等信息,并持续更新。 AI 不仅是个人的“外挂”,对公司也会带来变革。未来公司会加速数字化,业务拓展更多依托算力增加而非人力扩充,可能出现更多高效的小团队公司,满足未被满足的需求。 此外,“通往 AGI 之路”还有以下相关内容: 1. 对“飞书”感兴趣或想交流企业/个人效率提升,可访问“飞书官方社区——飞行社”。 2. 如需下载研究报告,可加入知识星球,内有数百份涵盖 AI 各方面的报告,并保持长期活跃更新。 3. 作者 Allen 端午假期实践了三篇教程,并准备调整写作工作流。
2025-03-04
用什么AI工具可以帮忙写教案,教案是word里面有表格,
以下是一些可以帮助您写教案(包含 word 表格)的 AI 工具: 1. 智谱 AI:可以通过上传相关参考资料,利用其内容生成插件来理解和整理信息,为教案的编写提供帮助。 2. 飞书自带的字段插件:例如可以总结宣语,生成视频的 prompt 指令,也可能对教案的编写有一定的辅助作用。 您可以根据具体需求和使用习惯选择适合的工具。
2025-02-23
coze的进阶教程有哪些,我需要有整个的搭建过程教程的,可以是共学活动里面的
以下是一些 Coze 的进阶教程和搭建过程的资源: 5 月 7 号():大聪明分享,主题为“Agent 的前世今生”,每个分享人分享最初接触 Coze 的经历以及现在用 Coze 做什么。流程为 20:00@?AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享,主题为“我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze”,20:00 21:20 大圣分享。 5 月 9 号():艾木分享,主题为“Agent 系统的核心构成:Workflow 和 Multiagent Flow(以‘Dr.Know’和‘卧底’为例),线上答疑。流程为 20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享,主题为“一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书”,20:00 21:00 罗文分享。 5 月 11 号():Itao 分享,主题为“和 AI 成为搭子”,线上答疑。流程为 20:00 21:00 Itao 分享,21:00 21:30 线上答疑。 此外,还有以下案例合集和教程:
2025-02-22