Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

入门需要把每个视频都看一遍嘛

Answer

对于入门是否需要把每个视频都看一遍,这取决于您的学习目标和时间安排。

Karpathy 的 LLM 入门介绍视频内容非常丰富全面,涵盖了预训练、有监督微调、强化学习等多个方面,包括数据、分词、Transformer 神经网络的输入输出和内部结构、推理、GPT-2 训练示例、Llama 3.1 基础推理示例等具体内容。还介绍了如何使用和在哪里找到 LLM 模型,如专有模型可通过访问官方网站或平台使用,开源模型可通过推理服务提供商、本地应用程序等方式体验和调用。同时也探讨了 ChatGPT 的本质、LLM 的局限性、优势、未来展望,如多模态、Agent 智能体、无处不在的隐形化、测试时训练、长上下文处理等发展趋势,以及跟踪 LLM 最新进展的资源,如 LLM 排行榜、AI News Newsletter、X(Twitter)等。

如果您希望对 LLM 有全面深入且系统的了解,观看全部视频会很有帮助。但如果您时间有限,或者只是对某些特定方面感兴趣,也可以有针对性地选择部分内容观看。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 大神Karpathy再发LLM入门介绍视频,入门必看!

卧槽,来了朋友们,Karpathy三个半小时LLM入门课程,如果想入门了解LLM的话必看这个视频。详细介绍LLM训练的全部过程,包括预训练、有监督微调和强化学习。1.预训练:数据、分词、Transformer神经网络的输入输出和内部结构、推理、GPT-2训练示例、Llama 3.1基础推理示例2.有监督微调:对话数据、"LLM心理学":幻觉、工具使用、知识/工作记忆、自我认知、模型需要token来思考、拼写、参差不齐的智能3.强化学习:熟能生巧、DeepSeek-R1、AlphaGo、RLHF。视频是23年十月那个视频的强化版本,讲的更加详细,即使没有技术背景也可以看懂。将提供对ChatGPT等LLM完整训练流程的直观理解,包含许多示例,并可能帮助你思考当前的能力、我们所处的位置以及未来的发展方向。下面是Gemini的详细总结,而且包含了时间轴,我也翻译了完整的视频,下载地址回复【Karpathy】获取字幕和原始视频,可以自己压制,压制完的太大了。[heading3]大型语言模型(LLM)和ChatGPT简介[content]视频目的(00:00-00:27):本视频旨在为普通受众提供一个关于大型语言模型(LLM),特别是像ChatGPT这样的模型的全面但易于理解的介绍。目标是建立思维模型,帮助理解LLM工具的本质、优势和局限性。文本框的奥秘(00:27-00:41):探讨用户与ChatGPT等LLM交互的核心界面——文本框。提出用户输入内容、模型返回文本的机制问题,以及背后对话的本质。

AI 大神Karpathy再发LLM入门介绍视频,入门必看!

专有模型(Proprietary Models)(03:18:38-03:19:23):对于OpenAI、Google等公司的专有模型,需要访问其官方网站或平台(如ChatGPT、Gemini AI Studio)使用。开源模型(Open-Weight Models)(03:19:23-03:21:16):对于DeepSeek、Llama等开源模型,可以使用以下方式:Inference Provider(Together AI)(03:19:23-03:21:16):使用Together AI等推理服务提供商,在线体验和调用各种开源模型。LM Studio(03:20:36-03:21:16):使用LM Studio等本地应用程序,在个人电脑上运行和部署较小的开源模型。[heading3]总结:ChatGPT的本质与未来展望[content]ChatGPT的本质(03:21:46-03:25:18):ChatGPT本质上是OpenAI数据标注员的神经网络模拟器,它模仿人类标注员在遵循OpenAI标注指南的情况下,对各种提示词的理想助手式回应。LLM的局限性(03:25:18-03:26:49):LLM并非完美,存在幻觉、瑞士奶酪式能力缺陷等问题。用户应谨慎使用,并进行人工检查和验证。LLM的优势(03:26:49-03:30:25):LLM是强大的工具,能够显著加速工作效率,并在各领域创造巨大价值。用户应将其视为工具箱中的工具,用于启发灵感、撰写初稿等,并始终对最终产品负责。LLM的未来(03:30:25-03:31:12):LLM的未来发展令人兴奋,多模态、Agent智能体、持续学习等趋势值得期待。虽然LLM仍处于早期发展阶段,但其潜力无限,未来可期。整理和翻译不易,可以的话希望给个三连,谢谢?

AI 大神Karpathy再发LLM入门介绍视频,入门必看!

多模态(Multimodality)(03:09:57-03:11:17):未来的LLM将具备多模态能力,不仅能处理文本,还能原生处理音频和图像等多种模态的数据,实现更自然的交互体验。Agent智能体(03:11:17-03:12:39):未来的LLM将发展为智能体,能够自主执行复杂任务,进行长期规划和执行,并与人类进行更深入的协作。无处不在的隐形化(Pervasive and Invisible)(03:12:39-03:13:13):LLM将更深入地融入各种工具和应用中,成为像计算机一样普及的基础设施。测试时训练(Test Time Training)(03:13:13-03:14:19):未来的研究方向之一是让模型在测试时也能持续学习和改进,克服当前模型参数固定的局限性。长上下文处理(Long Context)(03:14:19-03:15:06):未来的LLM需要处理更长的上下文,以应对多模态和长期任务的需求。[heading3]跟踪LLM最新进展的资源[content]LLM排行榜(AM-Leaderboard)(03:15:06-03:17:35):AM-Leaderboard是一个跟踪LLM模型性能的排行榜,基于人类对比评估进行排名,可以帮助了解各种模型的优劣。AI News Newsletter(03:17:35-03:18:19):AI News Newsletter是一个信息全面的AI新闻邮件列表,总结LLM领域的最新进展,并提供人工编辑的摘要。X(Twitter)(03:18:19-03:18:38):关注X(Twitter)上值得信赖的AI研究者和从业者,可以及时获取LLM领域的最新动态。

Others are asking
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
七天入门计划
以下是为您提供的七天入门 AI 的计划建议: 第一天: 开始接触李宏毅的生成式人工智能课程。 资源:在 B 站直接搜索《李宏毅 2024 春《生成式人工智能导论》。 第二天至第十四天: 抽空陆续花 2 周时间学完李宏毅的课程。 第五天: 研究并开始使用 Kimi。 参考资料: 。 抱着每天向 kimi 问 100 个问题的心态,调整自己的思考模式,在工作和生活中养成有问题问 AI 的习惯。您还可以参考公众号文章【每天问 Kimi 们 100 个问题,你就 AI 入门了】。 在学习过程中,建议做好笔记,总结所学知识和心得体会,以便更好地掌握和应用。
2025-04-13
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
入门:Ai绘画
以下是为您提供的 AI 绘画入门相关的资源和教程: 在“通往 AGI 之路介绍.pdf”中,有关于 AI 绘画入门的部分,包括产品工具与案例实战,开箱即用。 以下是一些 B 站的视频教程链接: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 还有 SD 新手从 0 入门的 AI 绘画教程,包括以下章节: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 您可以通过以上资源进行学习,祝您在 AI 绘画领域学有所成!
2025-04-10
AI入门
以下是为您提供的 AI 入门的相关指导: 一、Python + AI 入门 在深入学习 AI 时,编程可能会让您感到困难,尤其是对于不会代码的朋友。但别担心,这里有一份 20 分钟的简明入门指南,能帮助您更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 关于 Python: Python 就像哆啦 A 梦,拥有装满各种道具的标准库,遇到问题时可直接使用。若标准库道具不够,还能通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。Python 在 AI 领域被广泛使用,遍地是大哥。 关于 OpenAI API: OpenAI 通过两种方式提供服务,一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 二、JavaScript 的 AI 堆栈入门 尽管当前版本是一个很好的起点,但仍在逐步完善,路线图包括: 1. 交互式 CLI 用于 createaistack,开发人员可选择自己的项目脚手架和依赖项。 2. 用于高级用例的事务性数据库(例如,在问答中保留问题、用户偏好等)。 3. 更多的向量数据库和部署平台选项。 4. 用于开源模型的轻量级微调步骤。 同时,对在创建过程中发挥重要作用的开源项目表示感谢,如 Tailwind、ai sdk、dotenv、Next.js、langchain.js 等。 三、新手学习 AI 的方法 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-10
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
基于你的回答,对刚才所提到的三个部分再次展开详细叙述,要求每个部分的叙述字数不少于1000字
以下是对您提供的三个部分的详细叙述: 一、陶力文律师:拘灵遣将|不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事 在这部分内容中,重点强调了律师在运用 AI 时写好提示词的重要性以及相关的写作技巧和方法。 首先,结构化内容组织至关重要。通过使用编号、子标题和列表等方式,能够使文章的逻辑更加清晰,便于读者快速把握重点和理解内容。例如,在阐述具体的法律条款和案例分析时,可以将相关要点有条理地罗列出来,增强文章的可读性。 其次,规定概述内容解读结语的结构能够使文章围绕主题展开,有始有终。在开始时对相关规定进行简要概括,让读者对整体框架有初步了解;然后对具体内容进行深入解读,帮助读者理解规定的内涵和适用范围;最后以结语总结,强调重点或提出展望。 再者,案例和挑战的结合能够使文章更具说服力和实用性。通过引入实际案例,能够让抽象的法律规定和理论变得具体可感,读者可以更直观地理解其在实际操作中的应用。同时,分析潜在挑战并提供解决方案,能够帮助律师在面对复杂情况时做出更明智的决策。 此外,结合法规和实际操作也是必不可少的。法规为律师的工作提供了依据和准则,而实际操作案例则展示了法规在具体情境中的应用。通过两者的结合,能够为律师提供全面、准确的指导,使其在运用 AI 时更加得心应手。 最后,商业术语的使用能够体现文章的专业性和针对性。在餐饮行业相关的法律写作中,运用特定的商业术语,能够准确传达信息,避免歧义,使文章更符合行业特点和需求。 二、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 这部分内容主要围绕摄影构图和色彩在 AI 绘画中的应用展开。 在摄影构图方面,三角形构图法以其独特的稳定性能够让画面更加平衡美观。一张照片可以同时满足多种构图法,且构图并非一定要严谨,关键是要能够突出主体、叙事并留白,避免画面杂乱。同时,中国化美学构图具有极简且丰富、主次分明的特点,虽然欣赏门槛低,但掌握运用起来有一定难度。重复构图作为一种强大的视觉工具,能够增强信息的传递。 在色彩方面,色彩在 AI 绘画中具有重要地位,是拉开作品差距的关键因素。色彩部分涵盖了色彩心理学、色环、配色方案等内容。色彩心理学表明颜色能够影响人的情绪,在市场营销等多个领域都有着重要作用。例如,年度流行色会影响相关的营销活动。不同的颜色如红、黄、蓝等能够表现出多种不同甚至相反的情绪。 三、AI 梦:一丹一世界(下)2025 年 2 月 8 日副本 此部分主要涉及 AI 炼丹直播共学课的相关内容。 会议开场简单介绍了会议的背景和基本情况。 在直播共学课的介绍中,提到了课程由未推 AGI 麦乐园和摩哒社区共同举办,教授使用 Lora 或 AI 生图软件生图,并回顾了首节课内容及回放渠道。同时,讲解了 AI 梦一单一世界比赛的要求,包括使用特定平台和底模训练 Lora,提交六张以上含多样画面的作品等。 在作图创作思路方面,分为三步:第一步确定主题,可依据 Lora 风格或通过制造反差来确定方向;第二步确定主体,如人、动物、建筑等,并进行角色设定的联想;第三步增添叙事感,通过设置有反差、反逻辑的画面和多个元素,避免画面单调无趣。 在图片创作思路之后,还探讨了图片构成因素中的构图。
2025-03-25
计算两个时间差的绝对值,输出相差的完整天数。 获得用户输入的两个与时间相关的字符串,两个时间用逗号分隔,每个时间字符串格式示例如下:2018年08月01日17点21分21秒。 以此为要求写出python代码
以下是计算两个指定格式时间差的绝对值并输出相差完整天数的 Python 代码: ```python import datetime def calculate_days_difference: 解析时间字符串 time1 = datetime.datetime.strptime time2 = datetime.datetime.strptime 计算时间差 time_difference = abs 转换为天数并返回 return time_difference.days 示例用法 time1_str = "2023年08月01日17点21分21秒" time2_str = "2023年08月10日17点21分21秒" print ```
2025-03-22
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
我需要搭建一个每个人都能使用的知识库
要搭建一个每个人都能使用的知识库,可以考虑使用 GPT 并借助 embeddings 技术。以下是相关步骤和原理: 1. 文本处理:将大文本拆分成若干小文本块(chunk)。 2. 向量转换:通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块,作为问答的知识库。 3. 问题处理:当用户提出问题时,先将问题通过 embeddings API 转换成问题向量,然后与向量储存库中的所有文本块向量进行比对,查找距离最小的几个向量,提取对应的文本块,并与原有问题组合成新的 prompt 发送给 GPT API。 4. 容量限制:GPT3.5 一次交互支持的 Token 数量有限,embedding API 是解决处理大量领域知识的方案。 5. 理解 embeddings:embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。例如,“猫”和“狗”距离近,与“汽车”距离远。 例如,对于一篇万字长文,拆分成的 chunks 包含:文本块 1:本文作者:越山。xxxx。文本块 2:公众号越山集的介绍:传播效率方法,分享 AI 应用,陪伴彼此在成长路上,共同前行。文本块 3:《反脆弱》作者塔勒布xxxx。文本块 4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。如果提问是“此文作者是谁?”,通过比较 embeddings 向量,可以直观地看出文本块 1 跟这个问题的关联度最高,文本块 3 次之。最后发送给 GPT API 的问题会类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。”这样大语言模型大概率能回答上这个问题。
2025-03-16
现在有哪些类型的AI智能工具,每个类型分别有哪些主流产品,他们分别有什么优势
以下是一些常见类型的 AI 智能工具、主流产品及其优势: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议,助开发者更快、更少地编写代码。 通义灵码:阿里巴巴推出,提供行级/函数级实时续写、自然语言生成代码等多种能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于 130 亿参数的预训练大模型,可快速生成代码提升效率。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队推出的免费代码助手,基于自研基础大模型微调。 Codeium:通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。 2. 图生图工具: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格,效果好。 这些工具通过组合技术生成创意且质量不错的相似图像,但存在性能不稳定、生成内容不当等局限。 3. PPT 制作工具: Gamma:在线网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出,利用语音识别和自然语言处理技术优势,提供智能文本生成等功能。https://zhiwen.xfyun.cn/
2025-03-16
本地部署deep seek后如何搭建个人知识库,详细说明一下每个步骤
以下是本地部署 Deep Seek 后搭建个人知识库的详细步骤: 1. 在 RAGFlow 中配置 Deep Seek 模型 返回 RAGFlow ,打开右上角设置,进入模型提供商界面。 配置本地部署的 Deep Seek 模型,选择 Ollama ,并根据运行的模型配置相关信息。 设置基础 URL 。 点击确定。 2. 导入嵌入模型 导入一个用于文本向量化的嵌入模型。 3. 设置系统模型设置 4. 创建知识库 返回知识库,进入数据集,导入文件或设置文件夹当作知识库。 5. 文件解析 对导入的文件进行解析,解析速度取决于本机 GPU 性能(显卡性能),越好的显卡解析越快。 6. 检索测试 解析完成后,进行检索测试。 7. 进入聊天界面 测试没问题后,可进入聊天界面,助理设置可自行进行。 此外,如果想要对知识库进行更灵活的掌控,可以使用 AnythingLLM 软件,步骤如下: 1. 安装 AnythingLLM ,安装地址:https://useanything.com/download 。 2. 安装完成后进入配置页面,主要分为三步: 选择大模型。 选择文本嵌入模型。 选择向量数据库。 3. 构建本地知识库 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 4. 测试对话 完成上述配置后,即可与大模型进行对话。 在进行本地知识库搭建实操之前,还需要对 RAG 有大概的了解: RAG 是一种检索增强生成技术,应用过程包括文档加载、文本分割、存储(包括将文档块嵌入转换成向量形式并存储到向量数据库)、检索、输出(把问题以及检索出来的嵌入片一起提交给 LLM 生成答案)。文本加载器用于将用户提供的文本加载到内存中以便后续处理。
2025-03-07