AGI 指通用人工智能,是一种能够像人类一样执行各种智能任务的人工智能。
AIGC 是人工智能生成内容的缩写,在公众传播层面,最初指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。AIGC 是一种利用人工智能技术生成各种类型内容的应用方式,包括文字生成(如使用 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALL-E 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。
AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)都是内容生成的不同方式。UGC 由用户通过社交媒体等平台发布自己的内容,内容丰富多样,反映用户真实想法和创意,适用于互动性强的平台。PGC 由专业团队或机构根据特定标准和流程创作高质量内容,适用于需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。
作者:Garman邬嘉文原文:https://mp.weixin.qq.com/s/b7Cctfgb4w5LCCBrSYIlrg[heading2]Transformer决定边界[content]在CES 2024,李飞飞在争论LLM和AIGC名称不能混用,吴恩达觉得在公众传播没关系。李飞飞觉得难以接受,个人猜测是它模糊了大模型的本质。在公众传播层面:AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用AI生成音乐、图像、视频等内容。LLM:指NLP领域的大语言模型,如ChatGPT。GenAI:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。AGI:指通用人工智能,部分人觉得LLM具有AGI潜力,LeCun反对。公众传播一般会混用上述名词,但底层是transformer结构。(stable diffusion原采用LDM+UNet,后来改为DiT)而transformer底层是function loss损失函数Transformer是一个大参数(千亿级别)的回归方程。回归方程的Function loss拟合A to B mapping关系,实现数据集的压缩与还原。Transformer是在一定prompt condition情况下,repeat曾经出现过的数据内容,实现“生成”能力。大语言模型的智能体验在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。(Ilya)所以大语言模型是一个perfect memory,repeat曾经出现的内容。它与Alpha Go差异:Alpha Go是一个增强学习模型,学习结果会调整模型自身参数Alpha Go有推理能力,但大语言模型这块很弱。Transformer决定LLM是一个生成式模型。
作者:Garman邬嘉文原文:https://mp.weixin.qq.com/s/b7Cctfgb4w5LCCBrSYIlrg[heading2]Transformer决定边界[content]在CES 2024,李飞飞在争论LLM和AIGC名称不能混用,吴恩达觉得在公众传播没关系。李飞飞觉得难以接受,个人猜测是它模糊了大模型的本质。在公众传播层面:AIGC:指用Stable Diffusion或Midjourney生成图像内容,后来泛指用AI生成音乐、图像、视频等内容。LLM:指NLP领域的大语言模型,如ChatGPT。GenAI:生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了LLM和AIGC。AGI:指通用人工智能,部分人觉得LLM具有AGI潜力,LeCun反对。公众传播一般会混用上述名词,但底层是transformer结构。(stable diffusion原采用LDM+UNet,后来改为DiT)而transformer底层是function loss损失函数Transformer是一个大参数(千亿级别)的回归方程。回归方程的Function loss拟合A to B mapping关系,实现数据集的压缩与还原。Transformer是在一定prompt condition情况下,repeat曾经出现过的数据内容,实现“生成”能力。大语言模型的智能体验在两个数据集压缩后,能解释两个数据集之间地带的“连续”能力。(Ilya)所以大语言模型是一个perfect memory,repeat曾经出现的内容。它与Alpha Go差异:Alpha Go是一个增强学习模型,学习结果会调整模型自身参数Alpha Go有推理能力,但大语言模型这块很弱。Transformer决定LLM是一个生成式模型。
"大家好!这篇文章收集了社区小伙伴们向我提出的日常问题以及我的一些答复,算是一个全面的汇总。鉴于文章的科普性质和广泛的受众,我将通过问答的形式,尽量使用浅显易懂的语言来介绍一些基本概念,希望大家能有所收获。"[heading1]问题一、AIGC是什么?[content]AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。